Editing Support for Software Languages:
Implementation Practices in Language Server Protocols

Sven Peldszus
Ruhr-University Bochum
Germany

Djonathan Barros
PPGComp, Western Parana
State University
Brazil

ABSTRACT

Effectively using software languages, be it programming or domain-
specific languages, requires effective editing support. Modern IDEs,
modeling tools, and code editors typically provide sophisticated
support to create, comprehend, or modify instances—programs or
models—of particular languages. Unfortunately, building such edit-
ing support is challenging. While the engineering of languages
is well understood and supported by modern model-driven tech-
niques, there is a lack of engineering principles and best prac-
tices for realizing their editing support. Especially domain-specific
languages—often created by smaller organizations or individual
developers, sometimes even for single projects—would benefit from
better methods and tools to create proper editing support.

We study practices for implementing editing support in 30 so-
called language servers—implementations of the language server
protocol (LSP). The latter is a recent de facto standard to realize
editing support for languages, separated from the editing tools (e.g.,
IDEs or modeling tools), enhancing the reusability and quality of the
editing support. Witnessing the LSP’s popularity—a whopping 121
language servers are in existence today—we take this opportunity to
analyze the implementations of 30 language servers, some of which
support multiple languages. We identify concerns that developers
need to take into account when developing editing support, and
we synthesize implementation practices to address them, based on
a systematic analysis of the servers’ source code. We hope that our
results shed light on an important technology for software language
engineering, that facilitates language-oriented programming and
systems development, including model-driven engineering.

CCS CONCEPTS

« Software and its engineering — Language features; Formal
language definitions; Context specific languages.

KEYWORDS

Language engineering, code assistance, source code editor, imple-
mentation practices.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MODELS °22, October 23-28, 2022, Montreal, QC, Canada

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9466-6/22/10.

https://doi.org/10.1145/3550355.3552452

Wesley K. G. Assungio
Johannes Kepler University
Austria

Thorsten Berger
Ruhr-University Bochum
and Chalmers | University

of Gothenburg
Germany and Sweden

ACM Reference Format:

Djonathan Barros, Sven Peldszus, Wesley K. G. Assungéo, and Thorsten
Berger. 2022. Editing Support for Software Languages: Implementation
Practices in Language Server Protocols. In ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems (MODELS
"22), October 23-28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3550355.3552452

1 INTRODUCTION

Software languages are paramount—not only to software engi-
neering, but also to many other engineering disciplines that need
to create models and automate tasks. Effectively using software
languages—including programming languages, as well as domain-
specific or general-purpose modeling languages [11]—requires ef-
fective editing support. Modern IDEs and modeling tools often come
with sophisticated editing support to create, comprehend, and mod-
ify programs or models expressed in a certain language. Typical
editing support features are code completion, syntax highlighting,
error marking, formatting, and refactoring, among others.
Unfortunately, creating proper editing support for languages is
difficult. While for mainstream software languages, the vendors of
software engineering or modeling tools typically invest the neces-
sary resources to realize editing support, domain-specific languages
(DSLs) are often created by smaller organizations or individual de-
velopers. Sometimes, their use is limited to specific purposes or
only a few projects. At the same time, such languages play a major
role in increasing automation in software engineering [7, 64], and
offering concise and semantically rich notations [9, 13]. As such,
DSLs would especially benefit from better support to realize editing
support—allowing their users focus on solving real problems, in-
stead of wasting time with learning the exact use of individual DSLs.
Researchers and practitioners have worked intensively on meth-
ods and tools to build languages. Thanks to modern techniques,
such as meta-modeling, automated mapping of abstract-to-concrete
syntax, or model transformations, often integrated in modern and
convenient language workbenches [21], the architectures of lan-
guage infrastructures [30, 61] and the language engineering pro-
cesses are well-understood [23, 64]. In addition to the technology on
language engineering, there are implementation patterns for pro-
gramming languages [39], for instance, on how to build abstract syn-
tax trees (ASTs), on how to realize the tree walking and rewriting,
and on how to realize tree pattern matching [5]. For DSLs, patterns
for domain analysis, design, and implementation have been pre-
sented [33, 54]. Unfortunately, there is a lack of engineering princi-
ples and best practices for realizing the editing support of languages.
The language server protocol (LSP) [27, 35] is a recent initiative
from 2016 to modularize editing support into the so-called language

https://doi.org/10.1145/3550355.3552452
https://doi.org/10.1145/3550355.3552452

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

servers. The LSP addresses the problem that language-specific edit-
ing support is currently deeply integrated into single IDEs or editors,
preventing its reuse or extension for different tools. The LSP aims
at enabling language engineers to make their languages, be it pro-
gramming languages or DSLs, available to a wide range of editing
tools while requiring minimal effort for adoption and reuse. The
LSP describes a common API that can be implemented and reused
by different clients (i.e., editors and IDEs) [35]. The tools connect
to a language server, where individual editing support features can
be requested for a program or model. The LSP calls these instances
documents, which is the term we use in the remainder. Originally,
LSP was proposed by Microsoft to provide core features for the IDE
Visual Studio Code [35]. So far, a total of 23 features are defined in
the protocol. It quickly became popular as a protocol used by differ-
ent editors and languages [35]. As of now, 121 different language
servers are listed on a community-driven curated list of LSPs [53].
We took this opportunity and investigated the design and real-
ization of real language servers. Our goal was to identify imple-
mentation concerns related to the realization of language editing
support. By analyzing a substantial sample of 30 LSP server im-
plementations, we identified relevant concerns and the different
realizations. We synthesized both into a set of practices on how to
realize editing support that can be used by language engineers and
researchers. Our working hypothesis was that engineering prin-
ciples can be identified within existing language servers, paving
the way to our long-term goal of establishing patterns and pattern
catalogs for realizing language editing support. Among our sample,
we analyzed the source code of the seven most popular LSP features.
We followed a thematic synthesis method [12] by coding, analyzing,
grouping, and reporting how editing features are implemented.
We hope to provide researchers with concerns related to the real-
ization of editing support and insights on implementation practices
for addressing them, to spark a discussion on best practices and
eventually developing a theory and novel techniques on realizing
effective editing support for languages. We hope that practitioners
can use our concerns and discussed solutions as guidelines when
implementing new servers or extending existing ones.

2 BACKGROUND

Language editing support assists developers when writing, com-
prehending, and changing documents (i.e., programs or models).
Unfortunately, effective support needs to be language-specific, and
realizing it can be costly and error-prone. Typical editing support,
such as renaming, code navigation, or hover documentation, re-
quires proper parsing and traversal of the source tree and knowing
the specifics of each language [27]. Necessary engineering activities
such as choosing a suitable parser, knowing the keywords, collect-
ing runtime information, and formatting the source code properly,
are not trivial. Even worse, users may prefer different editing tools,
such as different IDEs and modeling tools, requiring editing support
to be implemented multiple times for individual languages [50]. To
this end, the API provided by the LSP, which can be implemented
once and used by multiple editing tools, reduces redundancies and
maintenance efforts for editing support implementations.

LSP Overview. The LSP [35] is a client-server protocol that en-
ables the clients (i.e., the editing tools) to request editing support

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

from language servers. The features that can be implemented are
defined by the LSP specification [35]. Each LSP server can imple-
ment different editing support features depending on the respective
language’s characteristics or the desired editing features.

The actual editing support is encapsulated as individual meth-

ods representing a total of 23 editing support features currently
specified by the LSP. A language server has, like its clients, access
to the workspace that contains the documents for which editing
support is required. Another abstraction, called symbols in the LSP,
refers to any language element for which some editing support can
be provided, such as identifiers, expressions, statements, or other
structural concepts (e.g., classes, methods, constants).
LSP Features. Based on the feature descriptions presented in the
LSP specification [35], we can classify the features into three differ-
ent categories. Note that we list and explain concrete features and
the category they belong to shortly, in Sec. 4.1, specifically Fig. 2.

Code assistance: The LSP offers seven features that assist developers
when writing new code. Those features usually suggest computa-
tions of changes, such as renaming symbols, formatting the code,
or suggesting code completions for a given prefix.

Code comprehension: The LSP offers 14 features to assist developers
when exploring documents (e.g., source code). Those features usu-
ally do not change documents, but help developers by providing
documentation and supporting the navigation through them.

Auxiliary: The LSP offers two features that allow LSP servers to
provide additional capabilities not further specified by the protocol.
One example is Execute Command, allowing the server to provide
additional capabilities, such as refactorings.

LSP Workflow. To give a general understanding on the LSP im-
plementations, we describe the typical internal workflow of how
feature requests are executed, as proposed in the LSP [35]. Every
feature request is independent of others and consists of four parts:

Action identification: When requesting a feature, the Client identifies
the action that must be executed (e.g., textDocument/completion)
and the execution’s target document. To describe this target, the
client sends a document identifier (DocumentID) and the cursor
position (line and column) within the document.

Load Document: Based on the DocumentID, the server loads the tar-
get document. To do this, not only the client on which the document
is being edited needs access to the documents but also the server.

Provide action: With access to the document, the server executes
the feature, e.g., identifying what symbol needs to be completed
and collecting the completion information. Some features, such as
Completion or Rename, require the server to explore all documents.

Feature response: Finally, the server returns a response message. For
instance, for the feature Completion, after collecting suggestions
that can be inserted at the target position, the server responds with
a set of Completion Items. Each item is a Text Edit operation that can
be applied to perform the suggested completion on the document.

3 METHODOLOGY

Our study focuses on implementation practices for editing support
in LSP servers. We aim to identify relevant concerns, which are
aspects that should be considered when developing editing support,

Editing Support for Software Languages: Implementation Practices in Language Server Protocols

Data Collection

Langserver.org
101 servers

Quantitative Analysis Qualitative Analysis

@ 7 concerns for
developing LSP servers
Consolidation

Popular
Features and
Categories

.

Formulatiol
Common
— segments

Concerns

Catego-

Filter P
rization

I:a

Correlation of -
87 servers Features and Grouping Segments
Servers labeled

sam-00 0 6
pling 4 I I8 { Labeling Relevant p
11 ' segments
/ | —— L
analysis L 9 T <—§\ :
T N Loop™
i Analysis and 1
30 servers : Extraction

Initial concerns: Experts
Architecture, Implementation (2nd and 4th authors)

Figure 1: Methodology overview

and best practices addressing these concerns. Fig. 1 illustrates our
methodology. First, a quantitative analysis illustrated in the center
of Fig. 1 and described in Sec. 3.2, and second, a qualitative analysis
illustrated on the right of Fig. 1 and described in Sec. 3.3. Further
details are provided in our replication package [3].

3.1 Language Server Selection

As subjects for our study, we selected a sample of 30 LSP servers
from a community-curated repository that collects known LSP
servers [53]. While currently amounting to 121 LSPs (May 2022), at
the time of the sample selection it had 101 LSPs (March 2021). We
selected our sample as follows:

No Source Code. First, we filtered out all LSP servers for which
we could not find their source code. This affected three servers.
Not Actively Developed. We removed 11 LSP servers listed as
archived or deprecated, taking into account the information on the
community repository and in the server’s source code repositories
(README files and “deprecated” flag). This step assured that we
focus on the current state-of-practice in LSP development.
Selection of all Java-based Servers. We selected all LSP servers
implemented in Java for the following three reasons. First, substan-
tial language engineering tooling is implemented in Java, allowing
us to compare the LSP servers with our own experiences in building
DSLs in Java-based tooling (specifically, EMF, the parser generator
ANTLR, and other related frameworks for language analysis and
program or model transformation) [6, 14, 29, 32, 42, 43, 48, 51, 57, 63,
64]. Second, Java is among the most popular and well-understood
programming languages, easing our analysis (as opposed to analyz-
ing servers written in R, Go, Erlang, or Elixir, for instance). Third,
Java is, together with Typescript, the most popular implementation
language among all LSP servers documented [53].

Random Selection among all other Servers. Being confident
about understanding the necessary details about our Java-based
LSP servers, we continued the analysis for a more diverse sample.

—_

0 g NG W N

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Table 1: Overview over the analyzed LSPs

target lang. type impl. source repository
lang.
ActionScript3 GPL Java github.com/BowlerHatLLC/vscode-nextgenas/tree/
master/language- server
R GPL R github.com/REditorSupport/languageserver
Go GPL Go github.com/golang/tools/tree/master/gopls
Erlang GPL Erlang github.com/erlang-ls/erlang_ls
Flux DSL Rust github.com/influxdata/flux-lsp
Assembler GPL C++ github.com/eclipse/che-che4z-lsp-for-hlasm
XML DSL Java github.com/angelozerr/lsp4xml
Turtle DSL Type- github.com/stardog-union/stardog-language-
script servers/tree/master/packages/turtle-language- server
C/C++ GPL C++ github.com/MaskRay/ccls
Java GPL Java github.com/eclipse/eclipse.jdt.ls
Robot Framework DSL Python github.com/robocorp/robotframework-1Isp
Rust GPL Rust github.com/rust-analyzer/rust-analyzer
Xtext (any lang.) DSL Java github.com/eclipse/xtext-core
Python GPL Python github.com/palantir/python-language-server
Cobol GPL Java github.com/eclipse/che- che4z-1sp-for-cobol
Elixir GPL Elixir github.com/elixir-Isp/elixir-ls
Puppet DSL Ruby github.com/lingua-pupuli/puppet-editor- services
PHP GPL PHP github.com/felixfbecker/php-language-server
Groovy GPL Java github.com/prominic/groovy-language-server
LaTeX DSL Rust github.com/efoerster/texlab
Apache Camel DSL Java github.com/camel-tooling/camel-language- server
Ballerina GPL Java github.com/ballerina-platform/ballerina-
lang/tree/master/language-server
Java GPL Java github.com/georgewfraser/vscode-javac
SonarLint DSL Java github.com/SonarSource/sonarlint-language- server
Lua GPL Java github.com/EmmyLua/EmmyLua-LanguageServer
MOCA DSL Java github.com/mrglassdanny/moca-language-server
OCaml GPL OCaml github.com/ocaml/ocaml-Isp
TTCN-3 DSL Go github.com/nokia/ntt
Swift & C-family GPL Swift github.com/apple/sourcekit-Isp
Vala GPL Vala gitlab.gnome.org/esodan/gvls

We randomly selected additional servers until we reached a total
sample size of 30 servers, including 18 additional LSP servers.

The purpose of this sampling process was to control the selec-
tion of the LSP servers with the aim of enabling proper exploration
among existing servers. Table 1 provides an overview of the studied
LSP servers. We selected 30 LSPs (x30% of the curated list), imple-
mented in 14 and targeting 31 programming languages or DSLs.
Taking saturation [25] as a quality criterion, we reached saturation
after analyzing the 18th LSP server of our sample that is when we
did not find any new insight (explained shortly, in Sec. 3.3).

3.2 Quantitative Analysis

We quantitatively analyzed the LSP servers to identify frequently
implemented features and correlations among them. We focus on
frequently implemented features as they provide us with a homo-
geneous range of implementations to be compared and help us to
identify relevant concerns and common implementation practices.

To collect the features implemented in the servers, we took ad-
vantage of the information available by default in each LSP (i.e.,
following the LSP specification). Every LSP server has a method
called initialize [35], which is the first method requested when a
client starts using the server. This method returns an object imple-
menting the interface InitializeResult, having the property capabili-
ties that describes all features available in the server. Since many
servers were hard to build and run, while nearly all servers had

https://github.com/BowlerHatLLC/vscode-nextgenas/tree/master/language-server
https://github.com/BowlerHatLLC/vscode-nextgenas/tree/master/language-server
https://github.com/REditorSupport/languageserver
https://github.com/golang/tools/tree/master/gopls
https://github.com/erlang-ls/erlang_ls
https://github.com/influxdata/flux-lsp
https://github.com/eclipse/che-che4z-lsp-for-hlasm
https://github.com/angelozerr/lsp4xml
https://github.com/stardog-union/stardog-language-servers/tree/master/packages/turtle-language-server
https://github.com/stardog-union/stardog-language-servers/tree/master/packages/turtle-language-server
https://github.com/MaskRay/ccls
https://github.com/eclipse/eclipse.jdt.ls
https://github.com/robocorp/robotframework-lsp
https://github.com/rust-analyzer/rust-analyzer
https://github.com/eclipse/xtext-core
https://github.com/palantir/python-language-server
https://github.com/eclipse/che-che4z-lsp-for-cobol
https://github.com/elixir-lsp/elixir-ls
https://github.com/lingua-pupuli/puppet-editor-services
https://github.com/felixfbecker/php-language-server
https://github.com/prominic/groovy-language-server
https://github.com/efoerster/texlab
https://github.com/camel-tooling/camel-language-server
https://github.com/ballerina-platform/ballerina-lang/tree/master/language-server
https://github.com/ballerina-platform/ballerina-lang/tree/master/language-server
https://github.com/georgewfraser/vscode-javac
https://github.com/SonarSource/sonarlint-language-server
https://github.com/EmmyLua/EmmyLua-LanguageServer
https://github.com/mrglassdanny/moca-language-server
https://github.com/ocaml/ocaml-lsp
https://github.com/nokia/ntt
https://github.com/apple/sourcekit-lsp
https://gitlab.gnome.org/esodan/gvls

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

the required information hard-coded, we statically analyzed their
implementations. Thus, for every server, we inspected the source
code of the initialize method to collect the features provided. We
also obtained the versions of the LSP specification implemented. At
the time of analysis, the version of the LSP specification was 3.16.0,
released on 12/2020. As it is a recent version and many of the LSPs
in our sample did not implemented it at the time of analysis, we
just considered features defined until version 3.15.0, from 01/2020.

3.3 Qualitative Analysis

To identify frequently used implementation practices, we applied
an iterative analysis approach in which we first identified relevant
concerns 2] and related practices afterwards. To be more precise, as
shown in Fig. 1, we proceeded as follows.

Based on the expert knowledge of the second and fourth authors,
we started with two initial concerns focusing on the architecture
and implementation-details of LSP servers. Driven by these two
concerns, we systematically collected common implementation
aspects for all LSP servers. First, we iteratively analyzed the indi-
vidual LSP server implementations and extracted relevant segments
(i-e., portions) of the source code that are related to the initial con-
cerns. Thereafter, we labeled each relevant code statement with
how exactly it addresses the initial concerns. For deriving more
detailed concerns, we grouped the labeled statements based on
their commonalities. Then, we refined these groups based on new
or already identified concerns. We continued this process for the
next LSP server until we analyzed our entire sample.

To formulate the practices addressing the identified concerns, we
conducted an exploratory analysis [15], starting from the identified
concerns. To this end, we analyzed the overall project structure
of each LSP server and identified entry points for each considered
LSP feature. After the entry point identification, we started an
extensive analysis of the source code to identify implementation
practices following a process inspired by thematic analysis [12].
We followed the feature implementation line-by-line but also de-
pendencies, e.g., method calls. We captured relevant practices on a
higher level as coding themes and described them as possible values,
which served as the codes of the thematic analysis. Whenever we
saw an interesting aspect of the implementation (libraries, code
patterns, interaction with other features/resources), we added a
new code. Then, we consolidated these codes in a group discussion
to formulate practices related to the concerns.

4 CONCERNS AND PRACTICES

We identified concerns by looking into typical software implemen-
tation aspects and considering activities such as software design
(i.e., architecture, including ways, how the system is structured),
followed by implementation practices for realizing the planned LSP
server. All concerns are specific to language engineering, e.g., we
looked at how instances are represented in a server (i.e., as an AST
or a simple string of characters on which the editing support is
implemented). In what follows, we present, discuss, and answer
each identified concern with the practices observed in our study.
The first concern is based on our quantitative analysis, while the
remaining six concerns emerged and were answered during our
qualitative analysis.

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

HEIME: - 22| |
g-—w QEE_EQ 5 ‘é‘“ .gw
Sls|elz|£|5|5/8|5 E ol EIElo|ElS 5
- |E|S|8|5|E|C|E|E|T c|E 2212|2585 aE-
S 12|5s|5(5(8825|8(5]0] 2 E]5]2|5]e|E| 5|5
3 |S|E|2|E|C|P|Els|E|2|<|E|8|25|El2|E]S| 2|88
n o 3 c © a c -
o [2)3|e(3|8/ele|23|8|8|58|E|2|5|3|5|3|=|E|2 2 gls
2 18|8|818]>|3[8|@|8|8|Slal@|e|=|8|a|S|E[8[R]5]|8]F
o :
#28 1
#8 3
5
7
8
8
8
10
10
10
10
11
12
13
13
13
13
13
14
15
15
15
16
16
17
17
18
20

[|
Total 2 2 4 6 8 8 8 9 14 14 15 15 17 17 18 19 20 23 24 27 27 28 28

-CodeComprehension -CodeAssisiance Auxiliary I:IDSL DGPL

Figure 2: Features implemented in each LSP server

4.1 Concern: Selection of Editing Features

When implementing a new LSP server, it is useful to know which
features are typically provided by LSP servers. To get a general
overview of possible features supported by LSP servers, we quanti-
fied all features provided by the LSP servers in our sample.

4.1.1 What are the most frequently implemented features? Figure 2
shows which features are implemented by which server. LSP fea-
tures are in the columns, and servers are in the rows. Both are
sorted in ascending order by the number of implemented features
or servers implementing the feature, respectively. We discuss the
provided features according to what kind of editing support they
offer and their frequency in the LSP server implementations. Un-
derstanding the frequency of the individual editing features can
help engineers in deciding which features to implement first, as
well as researchers in focusing their research on industry needs.

Goto Definition and Diagnostic are the most frequently
implemented features. These features constitute common editing
support for languages [27]. Only two servers miss these features,
servers #24 and #8 for Goto Definition and servers #24 and #28
for Diagnostic. These servers are special, they use LSP as a vehicle
to offer third-part services, such as offering a linter (#24).

Due to space limitations, we cannot describe all features in de-
tail and refer to the LSP specification [35]. Next, we focus on the
most frequently implemented third of LSP features, totaling seven
features. Reducing the number of features enabled us to analyze
their implementations in-depth. In what follows, we summarize
these seven features and the servers implementing them.

Editing Support for Software Languages: Implementation Practices in Language Server Protocols

(1) Goto Definition (Code Comprehension, 28 servers) allows
users to quickly navigate within a project to find where a
reference (e.g., a variable) is defined.

(2) Diagnostic (Code Assistance, 28 servers) returns results/er-
rors from compilers, parsers or even lint tools.

(3) Hover (Code Comprehension, 27 servers) shows information
related to a given text document position.

(4) Completion (Code Assistance, 27 servers) computes a list of
completion items at a given cursor position.

(5) Find References (Code Comprehension, 24 servers) collects
all references pointing to the symbol at the target position.

(6) Document Symbols (Code Comprehension, 23 servers) returns
either all symbols present in a document or even the entire
hierarchy of the present symbols[35].

(7) Signature Help (Code Comprehension, 20 servers) provides
additional information such as what is the parameter cur-
rently selected or the method’s documentation.

When investigating the seven most frequent features, we noticed
that these are the more generically specified features of the list in
Fig. 2, which give great flexibility on how and to what extent to
implement them to the developers. Altogether, these features cover
different aspects of language support ranging from resolving refer-
ences (Goto Definitionand Find References) over aggregating
relevant information (Hover, Document Symbols, and Signature
Help) to features providing more complicated tasks (Diagnostic
and Completion). This variety indicates that editing support de-
pends not primarily on a single kind of editing feature, but needs
rather diverse features.

Three LSP servers of our sample implement noticeably few fea-
tures (#8, #24, #28) and use LSP, as mentioned above, just as a
basis to offer third-party services. SonarLint (#24) only implements
Execute Command to forward the SonarLint [52] standalone-tool’s
static code analysis results. Similarly, nokia/ntt (#28) is an LSP server
for language-agnostic testing with TTCN-3, a DSL for scripting
tests. Finally, Turtle (#8), which is the basis of the Stardog IDE [55],
only implements Folding Range, Hover, and Diagnostics as a
wrapper for a data exploration tool. Altogether, LSP servers im-
plementing only a few features usually use LSP to forward the
functionality of powerful third-party libraries.

4.1.2 Which features to implement for a language? Previously, we
investigated what are the most frequently implemented editing
features and discussed possible reasons. Despite knowing what
can be provided by LSP servers, due to limited resources, this is
not enough information to develop an LSP server. The challenge
is to decide which features to implement. Thereby, we can have
two influencing factors. First, language-specific properties, such
as language paradigms, can impact the feasibility of the different
features. Second, there can be an interaction among the features,
e.g., features complementing each other.

Relations Between Languages and LSP Features. For all servers,
we calculated the correlation between implemented features and
language characteristics of the target languages. We used the R im-
plementation [49] of the Spearman’s rank correlation [41]. Figure 3
shows the resulting correlation matrix with the language character-
istics on the vertical axis and the features as well as the number of

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

j=
S,S E o %g @
S s £822 3 28 8.

S o 2EEEC @ -

ZE8CfE£E%50880 E 535858 §S

5OE2ECEEL ,58 ST s5c g=8

ScESEESRSELEO FggEBESS S£Q

83535 gL 88325805355 88g

QOEZELFREdEJTSERPGEREDTg » 20 %

S 3833298238383 85=3c38E 2oL E

SO 600 020080 606K 358 6206 E£688 03
ConorRPCOroo0oouWCrC3anmoiLoITddw ;
GPL [e) O 0 O 00000000 08
DSL o O 0 O 00000000 06
Imperative o 0' .
Declarative o 0'2
Object.Oriented [e) o [e) @ oo (@] (')
Functional © @ @ 0 O 000 000 02
Logic O oo 0.4
Concurrent Q 00 Q0 o 0.6
Unstructured o N

Procedural

Figure 3: Correlations between editing features and
paradigms of instance languages (bold circles are signifi-
cant at a significance level of 5%).

implemented features on the horizontal axis. As language character-
istics, we consider language type (general purpose language (GPL)
and DSL) and language paradigms (e.g., imperative, declarative, or
functional). Based on our sample size, all correlations with an abso-
lute correlation higher than 0.306 are statistically significant at a
level of 5% [31]. Altogether, we observed 55 significant correlations
of which we discuss the most interesting ones in what follows.

First, GPLs tend to have a positive correlation with all LSP fea-
tures whereas DSLs tend towards negative correlations, meaning
that servers for GPLs are in general likely to implement features
while servers for DSLs are likely to not implement features. We can
also see this correlation in Fig. 2, where DSLs are shown rather on
the top. However, popular DSLs such as XML, LaTeX, or Xtext still
implement many features. Therefore, the number of implemented
features could mainly depend on the language’s popularity. This is
supported by the popular languages Java, C/C++, and Rust that are
used to implement the most LSP features.

When looking at the individual correlations, we notice that there
is a strong correlation with Functional and Concurrent languages
for the feature Goto Implementation. Practically, there is a dis-
tinguishment between signature and implementation in such lan-
guages, explaining the observed popularity. While one would also
expect any Object-Oriented language to be supported by this feature,
this is only easily possible for class-based languages but not for
prototype-based languages such as Python.

Object-Oriented and Functional languages have a rather strong
correlation with Document Symbols, reflecting the strong structur-
ing in such languages and the need to assist developers by providing
all language constructs contained in a file.

For all other LSP features we cannot find strong correlations in
our example, either because they are implemented by nearly all
LSP servers or they are implemented only in a few cases, making
them more specific to individual considerations. In summary, be-
sides features that should be implemented in nearly all LSP servers,
there is some editing support specific to language paradigms. Still,
the popularity of a language seems to be the main driver in imple-
menting editing support and might also provide the resources to
implement less relevant features.

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

FindReferences —
SignatureHelp —
Hover —|
DocumentSymbols —
GotoDefinition —
Diagnostics —|

Completion —|

DocumentFormatting —|

Position

Figure 4: Parallel coordinates plot for 167 rules

Relations Among LSP Features. To identify features usually im-
plemented together, we utilized association rule mining that dis-
covers associations among data items [1], like if A and B are im-
plemented, C is implemented most likely, too. For that, we used
the algorithm Apriori, available on the R package arules [59]. As
parameters, we set the thresholds support to only consider features
in at least 63% of the servers, and confidence to 0.95, which means
that the features must appear together in at least 95% of the cases.

The algorithm mined 167 associations rules, summarized in Fig. 4.
Positions 1 to 5 indicate how many features are in the antecedent,
and rhs indicates consequent. The thickness of the arrows represent
the support, namely how strong is the association—thicker means
stronger, and the shading the [ift, which indicates how likely is the
association to happen—darker means more likely.

By analyzing the data, we can observe: (i) there are few rules
with five or four features, mostly involving Goto Definition and
Hover, which are the first and the third most frequent features; (ii)
there are no rules in which the consequent are the features Find
References, Signature Help, Document Symbols, and Document
Formatting; (iii) the rules with stronger lift have as consequent
Hover and Completion; (iv) Find References, Diagnostic, and
Completion are among the features with stronger support. Overall,
these results show that when servers have the popular features
Find References, Diagnostic, and Goto Definition, they will
most likely also have Hover and Completion.

4.2 Concern: Use of Third-Party Libraries

Libraries are a common practice for sharing and reusing function-
alities [26]. In some cases, even the entire language support can be
realized by wrapping libraries. Therefore, we are interested in the
roles of external libraries in the LSP implementations and searched
for recurring kinds of libraries.

4.2.1 Commonly Used Libraries. For many recurring problems, li-
braries provide mature solutions. We identified six different kinds of
libraries that are frequently used in the LSP server implementations.
Compiler/Parser (25 servers). Most frequently, LSP servers use
compilers or parsers to create a document’s abstract representation,
which they traverse to collect required information, e.g., reference
positions or suggested refactorings, such as renaming a symbol.
One example is the library Tolerant PHP Parser [34].

Parser Generators and Maintaining a Grammar (3 servers).
Comparable to compilers or parsers, custom grammars allow the

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

creation of an abstract syntax representation from a document’s
plain contents, but the grammar that describes the tokens of the
target language is part of the LSP project and used to generate a
parser (e.g., using Antlr [40]). Besides the LSP features, the LSP
server has to maintain the grammar, e.g., when language constructs
are introduced or deprecated as part of the target language’s evolu-
tion. For instance, the server MOCA (#26) maintains a grammar for
the DSL MOCA (see Table 1).
Documentation Handler (5 servers). Documentation such as
JavaDoc is usually declared in another syntax as the target instance.
It is ignored by parsers and can even be stored separate documents.
Libraries such as Jedi [28] for Python, ElixirSense [20] for Elixir,
and DocBlock [45] for PHP can handle such documentation and
map it to corresponding instance elements.
Environment Info Handler (9 servers). Besides information
from the documents and the language specification, environment-
specific information (e.g., libraries or the installed language environ-
ment) can be beneficial for features such as Code Completion. For
instance, the libraries M2Eclipse [19] and Buildship [16] can collect
information on Maven and Gradle dependencies of Java projects.
Linter (3 servers). The LSP feature Diagnostics provides informa-
tion such as wrong syntax. In addition to compiler reports, linters
and analysis tools are used to collect diagnostics. For instance, the
library pytlint [47] is used to validate the files and return warnings
related to source code formatting, the presence of smells, or recom-
mended refactorings (server #14). The server Elixir (#16) uses the
static analysis tool Dialyzer [22] to provide similar diagnostics.
LSP SDK (13 servers). There are a few SDKs helping engineers to
deal with LSP-related details (e.g., schemata of messages). We found
usages of LSP4] [18] for server implementations written in Java as
well as Microsoft/vscode-languageserver-node [36] targeting servers
implemented in Javascript/Typescript and running in Node.js.

In summary, libraries are mainly used to avoid custom implemen-
tations for accessing the document instances or additional needed
information for realizing LSP features.

4.2.2 Wrapped Language Support Libraries. While libraries mainly
support LSP feature implementations, 7 servers benefit from li-
braries that implement LSP features entirely or partially. For exam-
ple, Eclipse JDT [17] is a library used by the Java server (#10) that
implements features including Completion and Find References.
We observed the same with the library Jedi [28] used by the Python
server (#14). Those libraries provide enough features so that the
server becomes a wrapper around them, which only needs to pass
the document to the library and wrap its response, respectively.

Considering the decreased effort when utilizing libraries to im-
plement any aspect of an LSP server, engineers still have to consider
extra efforts to translate interfaces and wrap responses to utilize
library (e.g., translating linter diagnostic messages). Defining inter-
faces to encapsulate and avoid the libraries’ interfaces polluting the
server interfaces, potentially using design patterns (e.g., Adapter or
Facade [24]), must also be considered by LSP developers.

4.3 Concern: Structuring LSP Servers

Architecture plays an essential role in software engineering and is
crucial for the successful development and maintenance of software
systems [4, 24]. In the literature, various architectural patterns and

Editing Support for Software Languages: Implementation Practices in Language Server Protocols

\Groovyl gl y-l
Icompiler gj / gj Iproviders gj
Language Infrastructure Details Server Infrastructure Editing Support
requests representations from handle requests and pass representations to
mrglassdanny/moca-language-server
Imoca E Iservices E ! E

Language Infrastructure Details Editing Support Server Infrastructure

f f |

handle requests and delegates processing to

provides an abstract representation to

EmmyLua/EmmyLua-LanguageServer

the Editing Support is close to

EmmyLua-Common E j the Language Instance Representation

EmmyLua-LS $j

Language Infrastructure Details Server Infrastructure

Editing Support

handle requests and delegates to

Figure 5: Example of server layers observed

principles [24, 58] have been proposed, but when incorrectly ap-
plied, anti-patterns [8, 44] can emerge that can challenge realizing
a software system. Accordingly, we have to identify suitable design
principles for LSP servers.

When investigating the source code of the LSP servers, we iden-
tified two design principles that were applied or are applicable to
all investigated LSP server implementations. First, the architecture
of LSP servers can be realized based on a layered architectural style.
Second, LSP servers must consider the overall flow to completely
implement a feature when deciding how to structure the internal
communication of the components.

4.3.1 Layered Architecture: We observed that LSP servers are
mainly structured into three layers (Server Infrastructure, Language
Infrastructure, and Editing Support) with different responsibilities
for the LSP feature execution.

Figure 5 shows examples of the layered structure of LSP servers.
The server Moca (#26) is structured into well-defined package. The
package moca contains code to deal with the Language Infrastructure
details, such as parsing and creating an abstract instance represen-
tation, the package services the actual implementation of Editing
Support capabilities, and the project root contains code to deal with
the Server Infrastructure. A similar packaging structure is followed
by Groovy (#19) and Latex (#20).

However, not every server follows this structure. For example,
Lua (#25) has two main components: (i) EmmyLua-Common that
aggregates the Language Infrastructure and Editing Support, and (ii)
EmmyLua-LS providing Server Infrastructure.

Altogether, the responsibilities of the layers are as follows:
Language Infrastructure. This is the lowest layer and imple-
ments the immediate interaction with the documents (e.g., parsing
the source code for creating an abstract syntax representation). If
needed, support for multiple languages can be provided within
this layer. The input for this layer is usually a document and the
output is an instance representation that can easily be processed
to realize LSP features, such as an abstract syntax tree (AST). As
the parsing process can generate additional relevant information
(e.g., warnings/errors observed at parsing or compilation), it can
also implement patterns such as Publish/Subscribe to provide such
information to the Editing Support layer above it.

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Editing Support. This layer realizes the feature-specific process-
ing. For example, traversing the abstract representation to collect
completion items. Some servers opted to delegate this layer’s re-
sponsibility to language support library that provide features in-
cluding Rename and Completion (cf., Sec. 4.2).
Server Infrastructure. This layer is responsible for dealing with
protocol details (e.g., handling feature requests). Some protocol
details can be delegated to an LSP SDK. A curated list of LSP SDKs
for different languages can be found at the official LSP website,!
and we discuss observed examples in Sec. 4.2.

Even when the servers encapsulate code in the same layers,
the information flow might differ. Therefore, in what follows, we
discuss the most commonly observed execution flow.

4.3.2 Feature Execution Flow: For the servers not only wrapping
libraries, we identified the feature execution flow described in Sec. 2.
After receiving a request, the server loads the document into mem-
ory and then calls for each feature a provider that handles it. The
feature execution is usually implemented in three steps:

Parse. Navigating through a document’s symbols is usually needed
to implement features such as Completion and Find References. To
this end, most of the servers analyzed need to parse the document
into an abstract instance representation in the first execution step.
Traverse. The abstract syntax representation is then traversed to
collect the elements that will be needed to process the feature (e.g.,
all AST nodes that are symbols in a specific document).

Process. The collected elements are then processed to realize the
respective LSP feature. This can involve filtering, ordering, or col-
lecting additional information that is required to process the feature.

Besides this being the most common sequence, specific cases
where the execution of a feature is delegated to a library may result
in a different sequence of steps. One example is the feature Diagnos-
tic, which usually returns results or errors collected from a compiler,
parser, or even a linter library. The LSP server just translates the
messages into the response format required by the client, making
all other execution steps within the LSP server obsolete.

The observed flow is predestinated to applying the Pipes and
Filter pattern. However, while we found indications of this pattern,
no LSP server strictly follows the pattern. Altogether, LSP server
implementations can be effectively structured into layers containing
task-specific filters that can be flexibly exchanged (e.g., to support
multiple instance languages).

4.4 Concern: Implementation Granularity

When implementing an LSP server, one has to decide how granular
the implementation of features should be, and whether it makes
sense to separate feature implementations (and for which features)
into separate modules. We investigated every LSP server implemen-
tation and assigned a granularity level based on a 5-level Likert
scale ranging from the most coarse-grained (1) to more fine-grained
(5) granularity of the implementation:

1: Single Monolith (1 server). This granularity describes servers
that implement all provided features in a single structuring entity
(e.g., only one class). Just SonarLint (#24), which does not implement
any feature on its own, is implemented at this granularity level.

!https://microsoft.github.io/language-server-protocol/implementors/sdks/

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

2: Delegator per LSP Feature (6 servers). At this granularity a
single file that consists out of delegator methods is used to call a
library that will effectively implement the feature. This was the case
for almost all servers that reuse Language Supporting Libraries, such
as the Python server (#14). The only server that uses Supporting
Libraries, but that is not on this granularity is Swift (#29), which be-
sides delegating the execution to external libraries, also implements
support for multiple languages (level 5).

3: File/Class per LSP Feature (13 servers). The most common
case is where the server has one file or class per feature with en-
capsulated methods/functions to implement details of the features
(e.g., traversal strategies or even validation of the context where a
symbol applies).

4: Module of Multiple Files/Classes per LSP Feature (8
servers). The features’ implementation details are well encapsu-
lated in multiple files/classes as the implementation’s complexity
requires additional structuring. Among others, those feature im-
plementations contain non-trivial searches for specific content or
provide contexts to select AST nodes, e.g., variable/function com-
pletion in Ballerina (#22), or even have their own set of possible
values, e.g., snippets/keywords completions in Robot (#11).

5: Multiple Modules per Target Language (2 servers). At this
granularity, each feature is implemented in multiple modules (e.g.,
because the server provides mechanisms to implement the fea-
tures for multiple target languages). For example, Turtle (#8) is
one of the supported languages in the server Stardog. The sup-
port for all its target languages is implemented as extensions of an
AbstractLanguageServer that orchestrates the language-specific fea-
ture implementations execution. The editing support for each target
language is encapsulated in a module that must provide methods
to parse documents and provide diagnostics when changes happen.
While the server SourceKit (#29) is based on a Language Support-
ing Library, it also implements the logic to delegate the feature
execution to multiple language-specific libraries (e.g., the Swift
programming language) and translates the result to the expected
response format (e.g., a HoverResponse).

The servers tend to have straightforward implementations with
one file per feature as the most common granularity. We can observe
a tendency to finer-grained structuring when the features of LSP
servers get more complicated, e.g., when a feature is implemented
to support multiple languages.

4.5 Concern: Language Instance
Representation

For providing editing support, it usually necessary to have an in-
termediary representation of the documents. While we observed
that in some cases LSP servers can immediately operate on con-
crete syntax (e.g., source code representations), for most tasks a
structured instance representation in abstract syntax is needed.

4.5.1 Abstract Syntax Representation. To make information about
the program or model instances accessible, most LSP servers (25
servers) use ASTs. An AST is a structured, tree-based representation
of the concrete syntax, in which nodes of the tree represent the
symbols and the edges are the relations between the symbols. Also,
simpler representations, such as the Domain Object Model (DOM)

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

are used (e.g., in the R server (#2)), or servers immediately work on
the plain documents (e.g., SonarLint (#24)).

4.5.2 Tree Traversal. From identifying a symbol or even the pa-
rameters of a function node to collecting all variables declared in
a document, traversing the abstract representation of a document
is a very common task realized in LSP feature implementations.
This traversal can follow different strategies, from standard graph
traversal algorithms to ad hoc implementations for specific cases
to design patterns and third-party code.

As abstract syntax representations are usually instances of trees
or graphs, the most common strategy (13 servers) is to traverse them
using standard algorithms (e.g., breadth first search). Among oth-
ers, this strategy is used to pre-process the document structure (Go
server, #3) and create auxiliar index structures (cf. Sec. 4.6) or to col-
lect nodes when implementing a feature such as Find References.

Simple ad hoc algorithms for navigation are used by 10 servers.
for instance, the feature Completion in the XML server (#7) simply
navigates all parent nodes to suggest completions. Another usage
of such a bottom-up navigation is identifying the scope in which a
symbol is declared (e.g., whether a variable is below a function node
or a class definition). Finally, ad hoc traversal implementations are
also used to determine if the cursor position is within some specific
semantic structure, such as the right-hand side of an assignment
statement (Flux server, #5).

To make the traversal implementation reusable for multiple fea-
tures without implementing it each time, the Visitor pattern [24]
was used in 10 servers. The possibility to implement server-specific
visitors is commonly provided by compilers or language support
libraries (e.g., javac’s TreePathScanner [38], used by the server #23).
LSP servers use visitors to filter tree nodes or to accept nodes de-
fined by the visitor logic when running the feature Completion
(C/C++ server, #9). Besides object-oriented implementations, other
variations utilize lambda functions (e.g., rust-analyzer uses Hir [60]
to collect expected results). Some libraries like DT and Clang/sema
go one step further and provide declarative ways to specify node
characteristics for which the libraries directly execute features such
as Completion, Hover, or Find References. Lastly, we found cases
of using XPath for navigation, such as in the R server (#2).

Altogether, many libraries provide sophisticated support for
representing and traversing documents for all major languages. If
no suitable library is available for a target language, the needed
functionality can be generated after providing a grammar of the
target language (e.g., using Xtext). Only when using libraries is not
possible, or when there are good reasons for not using a library, LSP
server developers need to implement the abstract representation as
well as the traversal on their own.

4.6 Concern: Performance

For providing efficient and usable editing support, response times
are critical for the document editing experience by users. Con-
sequently, we expected to observe optimization strategies (e.g.,
caching) to improve the features’ execution performance. For ex-
ample, avoiding constantly re-parsing documents can increase per-
formance. We identified three common optimization strategies:

AST Caching. To avoid frequent recreation of abstract represen-
tations, these are stored in memory with a key-value relation that

Editing Support for Software Languages: Implementation Practices in Language Server Protocols

matches the file URI and the data structure (e.g., the root node of
an AST). The data structure can be loaded when the user notifies
that the file was opened (like in the XML server, #7) or even in the
server’s startup phase where all files of the workspace are com-
piled and cached. Here, it is required to implement mechanisms for
updating the abstract representation after changes to the document.
Auxiliary Index Structure. A strategy used by 13 servers to
access a representation of the document but avoiding direct oper-
ations on the abstract representation is to provide an auxiliar index
structure that contains relevant nodes of the parsed document. The
strategy is to once collect relevant nodes from the abstract represen-
tation and store them in a navigable data structure. One concrete
representation of such an auxiliary index structure is a symbol
table. As the indexed structure stores the information about the
symbols within a document, it can simplify the implementation
of LSP features. Developers do not need to explicitly implement
the traversal of the representation and to differentiate between the
different node types for each feature implementation. In addition,
it can also increase performance as information collected once can
be reused for future feature calls. As with the abstract representa-
tions, this indexed structure needs to be reprocessed every time a
document is changed (e.g., as implemented in the Cobol server, #15).
Enclosing Scope Scanning. In addition to using an abstract rep-
resentation to implement LSP features, 22 servers also directly
operate on a document for specific cases, avoiding the overhead of
constructing additional data structures. In principle, simple string
operations relying on navigating the text character by character
can be used to scan the document and collect information (e.g.,
where the current symbol begins). This information can also be
gathered by regular expressions, applied to either, the entire docu-
ment or just the target line, like the Elixir server (#16) does. As such
information can usually be collected from the AST node attributes
there is no need for explicitly processing the plain document.

Some servers check syntactic correctness through the direct anal-
ysis of the documents by relating a specific position in a document
to other positions (e.g., to identify whether a symbol is located
within any brackets or not). Using such information, the feature im-
plementation can determine if the symbol is inside the parameters
section of a method declaration or a function call (Xtext server, #13).
Other applications of this kind of logic is to identify if a special
character is preceding the current symbol (Assembler server, #6) or
to identify if the cursor is within a comment block (R server, #2).

Altogether, optimizations mainly focus on reducing the run-time
overhead for building intermediate document representations as
well as for searching these. As a downside, developers need to
handle updating the cached data when document changes emerge,
which is the subject of the next concern.

4.7 Concern: Handling Instance Changes

When providing editing support for languages, the constant change
of documents is omnipresent and has to be considered to preserve
the validity of the feature executions. The LSP protocol already
defines that the server must be notified when changes happen or
documents are saved [35]. Any performance optimization, such as
in-memory abstract representations and even index structures must
be reprocessed when they do not reflect the state of the related

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

resource anymore. The LSP specification establishes the textDocu-
ment/didChange and textDocument/didSave requests to notify the
LSP server that the resources were updated.

Among our servers, the most common case (19 servers) of syn-
chronization is the incremental application of the changes to the
resources, while nine servers synchronize the text based on the full
content. The servers SonarLint (#24) and Turtle (#8) do not update
the text content, but reload the entire content at every feature call.

The strategies to update the representations with the changed
content are (i) reprocess the file, parsing it again and recreating
the abstract representation; (ii) invalidate the file, marking it as
stale or cleaning the in-memory representation, so the file will be
reprocessed when the next feature is requested. In our sample, 13
servers reprocess upon textDocument/didChange requests, while
seven invalidate. Upon textDocument/didSave requests, five servers
reprocess and two servers invalidate the document.

In summary, handling document changes is essential for properly
providing editing support. We identified two strategies for tracking
document states, identifying the need to update caches, and actually
reacting to document changes.

5 DISCUSSION & LESSONS LEARNED

Recall that providing good editing support requires implementing
very different kinds of editing features. As such, our results on
what are the most implemented editing features, together with
their relations to language paradigms, can guide LSP developers
when prioritizing the editing features.

Interestingly, one does not always need heavyweight and
full-fledged language processing implementations. For instance, we
observed that using abstractions other than ASTs for representing
language instances can be sufficient. Also, auxiliary index
structures can avoid manual traversals of the AST for each feature
request. We observed that tree traversal is implemented repeatedly
for different purposes and has a high potential for reuse. However,
this might lead to more complicated server architectures than the
ones that we observed in our study.

The layered architecture proposed by us can easily support
such reusable mechanisms and allows flexibly connecting different
implementations. Providing more sophisticated editing support,
e.g., supporting multiple languages or more sophisticated analyses
will result in a shift from one class per feature, as mainly
observed in our study, toward multiple classes per feature. Further
modularizing LSPs is still an open research problem.

In general, libraries help to implement editing support, but can-
not do all the work and even generate additional concerns such as
how to encapsulate the external library’s interfaces to avoid the pol-
lution of the project interfaces. In this regard, generated editing sup-
port can be one way to go for standard editing support. Most servers
for DSLs (as opposed to the servers for programming languages) use
ANTLR (4 servers), but only for parser generation. The editing sup-
port implementation is hand-written, similar to the other LSPs. Only
the LSP realization of Xtext generically provides editing support
for any Xtext-based language, making the implementation more
fine-grained than the hand-written ones. It does not target a specific
language, but any that can be expressed in an Xtext grammar. For in-
stance, in a Completion request, possible symbols are looked up from

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

the grammar. In the end, the generated editing support implementa-
tion is the same as when Xtext generates an editor plugin for Eclipse.

All the languages supported by our language servers are
so-called parser-based languages. A complementary paradigm
is projectional editing (a.k.a., syntax-directed or structured
editing) [6, 62], where a user’s editing gestures directly change the
underlying AST, without any parsing involved. The core benefits
are basically unlimited language composition and flexible notations
(textual and visual ones). While we did not observe any specific
support, the fact that LSPs have been developed for graphical
modeling languages, such as Eclipse GLSP,2 shows that LSP can be
used for projectional-editing-based languages, such as implemented
in Jetbrains Meta Programming System (MPS). The main concern
is to represent and pass the location of elements edited, which
cannot be based on a line number and character number pair, but
requires some other locator mechansms (e.g., node ID).

6 THREATS TO VALIDITY

External Validity. First, our focus on LSP to investigate editing
support might bias our results unnecessarily towards LSP technical-
ities, limiting generalization to editing support in general. Still, LSP
is a widely used protocol for providing tool-independent editing
support, and the communication between clients and the LSP server
is only a minor part of the server implementations. Second, our se-
lection of LSP servers could have biased our findings (concerns and
solutions). To mitigate this threat, we followed a four-step selection
process to retrieve a suitable sample. We also cover a good range of
languages, the sample of servers we studied provides support for
34 different languages. Our server sample also relies on 14 different
implementation languages, reducing the bias of our findings. Third,
our results could be biased towards either DSLs or programming
languages. However, our sample contains 11 of the former and 19
of the latter, reducing bias.

Internal Validity. First, during our analysis, we might have
misunderstood some LSPs’ internals. However, our selection
strategy assured that we first investigate Java-based servers,
relying on our experience with Java-based language engineering
tooling. Second, we started to look into architecture and then
implementation, specifically, our starting points were the seven
most frequently implemented features. This selection could miss
important practices only seen in the other features. However, our
goal of supporting other developers when implementing their own
LSP server or “popular” features justifies this scope and potential
bias. Third, we used the well-established thematic analysis method.
After collecting the data of each server, the authors extensively
discussed the codes, labels, and refined the concerns.
Conclusion Validity. Even tough, the implementation practices
identified and discussed in this work give detailed insights into
how to implement editing support, these could be considered as
somewhat limited to the observed frequencies of the practices along
the concerns analyzed in Sec. 4 and Sec. 5. Still, the work builds a
solid foundation for further assessment of which practices work
best for the least amount of effort, and which practices go hand in
hand across the considered concerns.

https://www.eclipse.org/glsp/

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

7 RELATED WORK

Rodriguez-Echeverria et al. [50] propose an LSP infrastructure for
graphical modeling languages. Their goal is decoupling the editing
support from the graphical language. To this end, they studied
different alternatives to the LSP. In contrast, our work focus on
more general practices for implementing LSP servers.

Erdweg et al. [21] present details of language workbenches for
developing GPLs and DSLs. They investigate the implementation
of 10 language workbenches regarding feature coverage, size, and
required dependencies. However, nothing is explored concerning
editing support. Additionally, their work is somewhat dated (from
2013) regarding recent advances in language engineering and edit-
ing support. Recall that LSPs appeared in 2017.

Biinder and Kuchen [10] present how the LSP can be used to
satisfy both developers and domain experts, with different prefer-
ences, while working on the same projects. LSP provides the means
for integrating different editors in model-driven software develop-
ment projects. In a recent book [27], the developers of the Ballerina
Language Server (a cloud-native programming language) describe
the requirements to implement editing support using LSP. Then,
they detail the implementation for the client and the server of the
Ballerina language. Both works are experience reports for a specific
scenario or technology stack, which is different from our goal of
systematically studying implementation practices in many servers.

Stolpe et al. [56] describe the use of LSP to implement code edit-
ing that is reusable for any IDE with LSP support. However, they
focused exclusively on the Truffle framework as a target language.
In contrast, we describe details of implementation practices, con-
sidering several types of target languages. Mészaros et al. [37] also
leverage LSP to integrate a code comprehension tool named Code-
Compeass as part of Visual Studio Code. With a similar purpose,
Pupo et al. [46] use LSP to integrate a machine-learning-based tool
for improving Javascript security into an IDE. These papers mainly
describe the implementations for these specific cases without dis-
cussing concerns or practices that must be taken into account.

8 CONCLUSION

Effective editing support for software languages is crucial. We
presented the first set of engineering practices, systematically
identified—quantitatively and qualitatively— from a sample of 30
LSP servers. We synthesized seven core concerns and present prac-
tices for realizing language editing support. We found that a variety
of features are required to provide editing support, and the concrete
aspects of languages play a rather minor role in the basic editing sup-
port. Still, for advanced editing support, characteristics of the target
language become more important. For designing LSP servers, we
identified design and implementation practices that we hope to ex-
tend to a reference architecture in later works. When it comes to the
concrete implementation-level realization of LSP servers and edit-
ing support in general, for many implementation aspects, mature
libraries exist and are already widely used. In addition, we observed
multiple frequently used optimization techniques that usually come
together with the challenge of updating a caching structure. Also, to
address this challenge, we identified ways to represent the language
instances, to traverse these representations, and to handle changes
to them, which must trigger updates of these representations.

Editing Support for Software Languages: Implementation Practices in Language Server Protocols

REFERENCES

(1]

(2]
(3]

=
22

[10

[11

[12]

[13

=
it

[15]

[16]

[17

[18

[19]

[20

[21]

[22

[23
[24]

[25]

Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast Algorithms for Mining
Association Rules. In 20th International Conference on Very Large Data Bases
(VLDB), Vol. 1215. 487-499.

Sven Apel, Don Batory, Christian Kastner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines.

Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncao, and Thorsten Berger.
2022. Supplementary Material — Editing Support for Software Languages: Imple-
mentation Practices in Language Server Protocols 59. https://doi.org/10.5281/
zenodo.6974153

Len Bass, Paul Clements, and Rick Kazman. 2003. Software Architecture in Practice.
Addison-Wesley Professional.

Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold Lankamp, Bert
Lisser, Atze van der Ploeg, Tijs van der Storm, and Jurgen Vinju. 2015. Modular
Language Implementation in Rascal — Experience Report. Science of Computer
Programming 114 (2015), 7-19. https://doi.org/10.1016/j.scic0.2015.11.003 LDTA
(Language Descriptions, Tools, and Applications) Tool Challenge.

Thorsten Berger, Markus Volter, Hans Peter Jensen, Taweesap Dangprasert, and
Janet Siegmund. 2016. Efficiency of Projectional Editing: A Controlled Experiment.
In 24th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE).

M. Bialy, V. Pantelic, J. Jaskolka, A. Schaap, L. Patcas, M. Lawford, and A. Wassyng.
2017. Software Engineering for Model-based Development by Domain Experts.
In Handbook of System Safety and Security, Edward Griffor (Ed.). Syngress, 39-64.
William H. Brown, Raphael C. Malveau, Hays W. McCormick, and Thomas J.
Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis. Wiley & Sons.

Hendrik Biinder. 2019. Decoupling Language and Editor-the Impact of the Lan-
guage Server Protocol on Textual Domain-specific Languages.. In MODELSWARD.
129-140.

Hendrik Biinder and Herbert Kuchen. 2020. Towards Multi-editor Support for
Domain-specific Languages Utilizing the Language Server Protocol. In Model-
Driven Engineering and Software Development, Slimane Hammoudi, Luis Ferreira
Pires, and Bran Seli¢ (Eds.). Springer International Publishing, Cham, 225-245.
S Cook, C Bock, P Rivett, T Rutt, E Seidewitz, B Selic, and D Tolbert. 2017. Unified
Modeling Language (uml) Version 2.5. 1. Object Management Group (OMG),
Standard 12 (2017).

Daniela S. Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic
Synthesis in Software Engineering. In International Symposium on Empirical
Software Engineering and Measurement. 275-284.

Swaib Dragule, Thorsten Berger, Claudio Menghi, and Patrizio Pelliccione. 2021.
A Survey on the Design Space of End-user-oriented Languages for Specifying
Robotic Missions. Software and Systems Modeling (Feb. 2021). https://doi.org/10.
1007/s10270-020-00854-x

Swaib Dragule, Thorsten Berger, Claudio Menghi, and Patrizio Pelliccione. 2021.
A Survey on the Design Space of End-User Oriented Languages for Specifying
Robotic Missions. International Journal of Software and Systems Modeling 20, 4
(2021), 1123-1158.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. In Guide
to Advanced Empirical Software Engineering. Springer, 285-311.

Eclipse Foundation. 2022. Eclipse Buildship: Gradle integration for the Eclipse IDE.
https://github.com/eclipse/buildship Accessed: 2022-04-10.

Eclipse Foundation. 2022. Eclipse Java development tools (JDT). https://www.
eclipse.org/jdt/ Accessed: 2022-04-10.

Eclipse Foundation. 2022. Eclipse LSP4F. https://github.com/eclipse/lsp4j Ac-
cessed: 2022-04-10.

Eclipse Foundation. 2022. M2Eclipse. https://www.eclipse.org/m2e/ Accessed:
2022-04-10.

Elixir Language Server Protocol. 2022. ElixirSense. https://github.com/elixir-
Isp/elixir_sense Accessed: 2022-04-10.

Sebastian Erdweg, Tijs van der Storm, Markus Vélter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido H. Wachsmuth, and Jimi van der Woning. 2013. The State
of the Art in Language Workbenches. In International Conference on Software
Language Engineering (SLE).

Ericsson AB. 2022. Dialyzer User's Guide. https://www.erlang.org/doc/man/
dialyzer.html Accessed: 2022-04-10.

Martin Fowler. 2010. Domain-specific Languages. Pearson Education.

Erich Gamma, Richard Helm, Ralph Johnson, Ralph E Johnson, John Vlissides,
et al. 1995. Design Patterns: Elements of Reusable Object-oriented Software. Pearson
Deutschland GmbH.

B.G. Glaser. 1978. Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory. Sociology Press. https://books.google.at/books?id=73-2AAAAIAA]

[26
[27

[28

[38
[39
[40

[41

[43

[44

[47

(48

[49

[51

]

]

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada

Martin L Griss. 1993. Software reuse: From library to factory. IBM systems journal
32, 4 (1993), 548-566.

Nadeeshaan Gunasinghe and Nipuna Marcus. 2022. Language Server Protocol and
Implementation. Apress. https://doi.org/10.1007/978-1-4842-7792-8

Dave Halter. 2022. Jedi - an awesome autocompletion, static analysis and refactoring
library for Python. https://jedi.readthedocs.io/en/latest/ Accessed: 2022-04-10.
Regina Hebig, Christoph Seidl, Thorsten Berger, John Kook Pedersen, and Andrzej
Wasowski. 2018. Model Transformation Languages Under a Magnifying Glass
- A Controlled Experiment with Xtend, ATL, and QVT. In 26th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE).

Ralf Lammel. 2018. Software Languages. Springer.

Peter M Lee. 2005. Upper Critical Values for Spearman’s Rank Correlation
Coefficient Rs. https://www.york.ac.uk/depts/maths/tables/

Max Lillack, Thorsten Berger, and Regina Hebig. 2016. Experiences from Reengi-
neering and Modularizing a Legacy Software Generator with a Projectional
Language Workbench. In Proceedings of the 20th International Systems and Soft-
ware Product Line Conference (SPLC).

Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and How to
Develop Domain-specific Languages. ACM computing surveys (CSUR) 37, 4 (2005),
316-344.

Microsoft. 2022. An early-stage PHP parser designed for IDE usage scenarios.
https://github.com/microsoft/tolerant-php-parser Accessed: 2022-04-10.
Microsoft. 2022. Language Server Protocol. https://microsoft.github.io/language-
server-protocol/ Accessed: 2022-04-05.

Microsoft. 2022. VSCode Language Server - Node. https://github.com/microsoft/
vscode-languageserver-node Accessed: 2022-04-10.

M. Mészaros, M. Cserép, and A. Fekete. 2019. Delivering Comprehension Features
into Source Code Editors through LSP. In International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). 1581
1586.

Oracle. 2022. Class TreePathScanner. https://docs.oracle.com/javase/7/docs/jdk/
api/javac/tree/com/sun/source/util/TreePathScanner.html Accessed: 2022-04-10.
Terence Parr. 2009. Language Implementation Patterns: Create Your Own Domain-
specific and General Programming Languages. Pragmatic Bookshelf.

Terence Parr. 2022. ANTLR (ANother Tool for Language Recognition). https:
//www.antlr.org/ Accessed: 2022-04-10.

Karl Pearson. 1896. VIL. Mathematical contributions to the theory of evolution. IIL.
Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society
of London. Series A, containing papers of a mathematical or physical character 187
(1896), 253-318.

Sven Peldszus. 2022. Security Compliance in Model-driven Development of Software
Systems in Presence of Long-Term Evolution and Variants. Springer. https://doi.
0rg/10.1007/978-3-658-37665-9

Sven Peldszus, Géza Kulcsar, Malte Lochau, and Sandro Schulze. 2015. Incremental
Co-Evolution of Java Programs based on Bidirectional Graph Transformation.
In Principles and Practices of Programming on The Java Platform (PPPJ), Ryan
Stansifer and Andreas Krall (Eds.). ACM, 138-151. https://doi.org/10.1145/
2807426.2807438

Sven Peldszus, Géza Kulcsar, Malte Lochau, and Sandro Schulze. 2016. Con-
tinuous Detection of Design Flaws in Evolving Object-oriented Programs Us-
ing Incremental Multi-pattern Matching. In Proceedings of the 31st Interna-
tional Conference on Automated Software Engineering (ASE). 578-589. https:
//doi.org/10.1145/2970276.2970338

phpDocumentor. 2022. ReflectionDocBlock. https://github.com/phpDocumentor/
ReflectionDocBlock Accessed: 2022-04-10.

Angel Luis Scull Pupo, Jens Nicolay, Kyriakos Efthymiadis, Ann Nowé, Coen
De Roover, and Elisa Gonzalez Boix. 2019. Guardiaml: Machine Learning-assisted
Dynamic Information Flow Control. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 624-628.
Python Code Quality Authority. 2022. Pylint. https://pypi.org/project/pylint/
Accessed: 2022-04-10.

Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. 2019. Geoscenario:
An Open DSL for Autonomous Driving Scenario Representation. In 30th IEEE
Intelligent Vehicles Symposium (IV).

RDocumentation. 2022. cor: Correlation, Variance and Covariance (Matrices). https:
//www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor Accessed:
2022-04-10.

Roberto Rodriguez-Echeverria, Javier Luis Canovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. 2018. Towards a Language Server Protocol Infrastruc-
ture for Graphical Modeling. In 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (Copenhagen, Denmark) (MOD-
ELS ’18). Association for Computing Machinery, New York, NY, USA, 370-380.
https://doi.org/10.1145/3239372.3239383

Simon Schauss, Ralf Limmel, Johannes Hartel, Marcel Heinz, Kevin Klein, Lukas
Hartel, and Thorsten Berger. 2017. A Chrestomathy of DSL Implementations. In
10th ACM SIGPLAN International Conference on Software Language Engineering
(SLE).

https://doi.org/10.5281/zenodo.6974153
https://doi.org/10.5281/zenodo.6974153
https://doi.org/10.1016/j.scico.2015.11.003
https://doi.org/10.1007/s10270-020-00854-x
https://doi.org/10.1007/s10270-020-00854-x
https://github.com/eclipse/buildship
https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/
https://github.com/eclipse/lsp4j
https://www.eclipse.org/m2e/
https://github.com/elixir-lsp/elixir_sense
https://github.com/elixir-lsp/elixir_sense
https://www.erlang.org/doc/man/dialyzer.html
https://www.erlang.org/doc/man/dialyzer.html
https://books.google.at/books?id=73-2AAAAIAAJ
https://doi.org/10.1007/978-1-4842-7792-8
https://jedi.readthedocs.io/en/latest/
https://www.york.ac.uk/depts/maths/tables/
https://github.com/microsoft/tolerant-php-parser
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/microsoft/vscode-languageserver-node
https://github.com/microsoft/vscode-languageserver-node
https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/util/TreePathScanner.html
https://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/util/TreePathScanner.html
https://www.antlr.org/
https://www.antlr.org/
https://doi.org/10.1007/978-3-658-37665-9
https://doi.org/10.1007/978-3-658-37665-9
https://doi.org/10.1145/2807426.2807438
https://doi.org/10.1145/2807426.2807438
https://doi.org/10.1145/2970276.2970338
https://doi.org/10.1145/2970276.2970338
https://github.com/phpDocumentor/ReflectionDocBlock
https://github.com/phpDocumentor/ReflectionDocBlock
https://pypi.org/project/pylint/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor
https://doi.org/10.1145/3239372.3239383

MODELS ’22, October 23-28, 2022, Montreal, QC, Canada Djonathan Barros, Sven Peldszus, Wesley K. G. Assuncéo, and Thorsten Berger

[52] SonarSource. 2022. SonarLint Website. https://www.sonarlint.org/ Accessed:
2022-04-10.

[53] Sourcegraph. 2022. Langserver.org: A community-driven source of knowledge for
Language Server Protocol implementations. https://langserver.org/ Accessed:
2022-04-05.

[54] Diomidis Spinellis. 2001. Notable Design Patterns for Domain-specific Languages.

Journal of Systems and Software 56, 1 (2001), 91-99. https://doi.org/10.1016/S0164-

1212(00)00089-3

Stardog Union. 2022. StarDog IDE. https://www.stardog.com/studio/ Accessed:

2022-04-10.

[56] Daniel Stolpe, Tim Felgentreff, Christian Humer, Fabio Niephaus, and Robert
Hirschfeld. 2019. Language-independent Development Environment Support
for Dynamic Runtimes. In Proceedings of the 15th ACM SIGPLAN International
Symposium on Dynamic Languages (Athens, Greece) (DLS 2019). Association for
Computing Machinery, New York, NY, USA, 80-90. https://doi.org/10.1145/
3359619.3359746

[57] Daniel Stritber, Sven Peldszus, and Jan Jirjens. 2018. Taming Multi-Variability of
Software Product Line Transformations. In Fundamental Approaches to Software
Engineering (FASE) (Lecture Notes in Computer Science, Vol. 10802), Alessandra
Russo and Andy Schiirr (Eds.). Springer, 337-355. https://doi.org/10.1007/978-3-
319-89363-1_19

[58] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. 2010. "Software

Architecture - Foundations, Theory, and Practice". Wiley.

The Comprehensive R Archive Network. 2022. arules: Mining Association Rules

and Frequent Itemsets. https://cran.r-project.org/web/packages/arules/index.html

Accessed: 2022-04-10.

[60] The Rust Foundation. 2022. Guide to Rustc Development: The HIR. https://rustc-

dev-guide.rust-lang.org/hirhtml Accessed: 2022-04-10.

M Volter, S Benz, C Dietrich, B Engelmann, M Helander, LCL Kats, E Visser, and

GH Wachsmuth. 2013. DSL Engineering - Designing, Implementing and Using

Domain-specific Languages. M Volter / DSLBook.org.

Markus Vélter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014. Towards

User-friendly Projectional Editors. In 7th ACM SIGPLAN International Conference

on Software Language Engineering (SLE).

[63] Markus Vélter, Tamas Szabd, Sascha Lisson, Bernd Kolb, Sebastian Erdweg, and

Thorsten Berger. 2016. Efficient Development of Consistent Projectional Ed-

itors Using Grammar Cells. In International Conference on Software Language

Engineering (SLE).

Andrzej Wasowski and Thorsten Berger. 2022. Domain-specific Languages: Effec-

tive Modeling, Automation, and Reuse. http://dsl.design

[55

[59

[61

[62

=
o

https://www.sonarlint.org/
https://langserver.org/
https://doi.org/10.1016/S0164-1212(00)00089-3
https://doi.org/10.1016/S0164-1212(00)00089-3
https://www.stardog.com/studio/
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1145/3359619.3359746
https://doi.org/10.1007/978-3-319-89363-1_19
https://doi.org/10.1007/978-3-319-89363-1_19
https://cran.r-project.org/web/packages/arules/index.html
https://rustc-dev-guide.rust-lang.org/hir.html
https://rustc-dev-guide.rust-lang.org/hir.html
http://dsl.design

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Language Server Selection
	3.2 Quantitative Analysis
	3.3 Qualitative Analysis

	4 Concerns and Practices
	4.1 Concern: Selection of Editing Features
	4.2 Concern: Use of Third-Party Libraries
	4.3 Concern: Structuring LSP Servers
	4.4 Concern: Implementation Granularity
	4.5 Concern: Language Instance Representation
	4.6 Concern: Performance
	4.7 Concern: Handling Instance Changes

	5 Discussion & Lessons Learned
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

