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UNIVERSITY OF KOBLENZ-LANDAU

Abstract

Security Compliance in Model-driven Development of Software Systems in
Presence of Long-Term Evolution and Variants

by Sven Matthias Peldszus

Many software systems tend to be used on a long-term basis, are highly interconnected, share
many common parts, and often process security-critical data. Due to these trends, it is vital to
keep up with ever-changing security precautions, attacks, and mitigations for preserving a soft-
ware system’s security. Model-based system development enables us to address security issues in
the early phases of the software design, e.g., using UMLsec in UML models or using SecDFDs.
Unfortunately, such design-time models are often inconsistent with the implementation or even
among themselves. This inconsistency might cause security violations. The main reason for this
is continuous changes in the security assumptions and the design of software systems, for in-
stance, due to structural decay. To prevent such inconsistencies, all changes have to be reflected
in both the design-time models of the software system and the software system’s implementation.
The detection of where which changes have to be applied has currently to be performed manu-
ally by developers. As this task requires considering many and often indiscernible dependencies,
manual changes often give rise to new inconsistencies that are likely to lead to security viola-
tions. An additional burden to detecting security violations and preserving a software system’s
maintainability is potential reuse among different variants of an individual software system.

In this thesis, we present the GRaViTY approach for continuously supporting developers
with an automated propagation of changes on a single representation of a software system to
all other representations for avoiding inconsistencies. Our synchronization is based on Triple
Graph Grammars as supported by the eMoflon transformation tool and currently supports bidi-
rectional synchronization between Java source code and UML class diagrams. Based on this
synchronization, security experts can specify security requirements on the most suitable software
system representation using the UMLsec or SecDFD approach. For example, domain models
can be suitable for the classification of sensitive information of the domain and implementation
models for tailoring encryption according to the planned deployment. We reuse these security
requirements for the verification and enforcement of them on all representations of the software
system using automated security checks. This allows us to verify whether the implementation is
compliant with the specified security requirements, as needed in certifications. To preserve this
compliance when restructuring the software system, we provide support for semantics preserving
refactorings that are enriched with security preserving constraints. Here, we leverage the formal-
ism of algebraic graph transformation rules for the specification and implemented these using the
transformation tool Henshin. For both security checks and refactorings, we show how these can
be applied to variant-rich software systems, also known as software product lines. For this pur-
pose, we leverage an interpretation of OCL constraints on product lines and extend the Henshin
tool to support variability. To allow the application of the approach to legacy systems, we show
how variability-aware UML models can be reverse-engineered from an existing software product
line using Antenna preprocessor statements and how existing early SecDFD design models can
be semi-automatically mapped to the implementation. In addition to an evaluation of the single
parts of the approach, the overall approach is demonstrated in two real-world case studies, the
iTrust electronics health records system and the Eclipse Secure Storage.
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UNIVERSITY OF KOBLENZ-LANDAU

Zusammenfassung

Security Compliance in Model-driven Development of Software Systems in
Presence of Long-Term Evolution and Variants

von Sven Matthias Peldszus

Moderne Softwaresysteme werden über immer längere Zeiträume eingesetzt, stärker vernetzt,
haben eine steigende Wiederverwertung und verarbeiten mehr sicherheitskritische Daten. Um
die Sicherheit eines Softwaresysteme zu gewährleisten ist es wichtig mit sich ständig ändern-
den Sicherheitsvorkehrungen, Angriffen und Abwehrmaßnahmen Schritt zu halten. Die mod-
ellbasierte Entwicklung ermöglicht es Sicherheitsprobleme bereits in frühen Softwareentwurf-
sphasen, z.B. mittels UMLsec in UML-Modellen oder mittels SecDFDs, zu adressieren. Leider
sind diese Entwurfsmodelle oft inkonsistent mit ihrer Implementierung oder sogar untereinan-
der. Der Hauptgrund ist die kontinuierliche Veränderung von Sicherheitsannahmen und des
Softwaresystemdesign, z.B. aufgrund von strukturellem Verfall. Um solche Inkonsistenzen zu
vermeiden, müssen sich alle Änderungen sowohl in den Entwurfsmodellen als auch in der Im-
plementierung angewendet werden. Wo welche Änderungen angewendet werden müssen, muss
derzeit manuell von den Entwicklern bestimmt werden. Da bei dieser Aufgabe viele und oft nicht
erkennbare Abhängigkeiten berücksichtigt werden müssen, führen manuelle Änderungen häufig
zu neuen Inkonsistenzen, die zu Sicherheitsproblemen führen können. Die hohe Wiederverwen-
dung zwischen verschiedenen Varianten eines einzelnen Systems ist eine zusätzliche Belastung
beim Erkennen von Sicherheitsproblemen und dem Wartbarhalten des Systems.

Zur Vermeidung von Inkonsistenzen präsentiert diese Dissertation einen Ansatz zur Unter-
stützung von Entwicklern basierend auf einer kontinuierlichen, automatisierten Änderungsprop-
agation zwischen allen Systemrepräsentationen. Diese Änderungspropagation basiert auf einer
Tripel-Graph-Grammatik wie sie in eMoflon spezifiziert werden kann. Dabei unterstützen wir
bidirektionale Änderungspropagationen zwischen Java Programmen und UML Klassendiagram-
men. Durch diese Änderungspropagation wird Sicherheitsexperten ermöglicht Sicherheitseigen-
schaften mittels UMLsec oder SecDFD auf der am besten geeigneten Systemrepräsentation zu
spezifizieren, z.B. Domänenmodelle zur Klassifizierung vertraulicher Informationen oder Imple-
mentierungsmodelle für Verschlüsselungen. Diese Sicherheitsspezifikationen werden automa-
tisiert auf allen Systemrepräsentationen geprüft. Auf diese Weise kann nachgewiesen werden,
dass die Implementierung der geplanten Sicherheitsspezifikation entspricht. Um diese Com-
pliance bei einer Umstrukturierung zu erhalten, werden semantikerhaltende Refactorings, an-
gereichert um sicherheitserhaltende Bedingungen, eingeführt. Diese Refactorings basieren auf
algebraischen Graphtransformationen, die mittels Henshin spezifiziert werden. Sowohl für die
Sicherheitsüberprüfungen als auch für die Refactorings zeigen wir deren Anwendung auf Software-
Produktlinien. Dafür verwenden wir eine Interpretation von OCL Constraints und haben das
Transformationstool Henshin um eine Unterstützung von Variabilität erweitert. Um die Anwen-
dung des Ansatzes auf Bestandssysteme zu unterstützen, zeigen wir, wie UML Modelle inklusive
der Spezifikation von Varianten aus einer bestehenden Softwareproduktlinie basierend auf An-
tenna Präprozessoranweisungen erstellt werden können und wie bestehende SecDFD Modelle
halbautomatisch auf die Implementierung abgebildet werden können. Neben einer Evaluation
der einzelnen Teile des Ansatzes wird der Gesamtansatz in zwei Open Source Fallstudien, dem
elektronischen Patientenaktensystem iTrust und dem Eclipse Secure Storage, demonstriert.
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Chapter 1

Introduction

Software has become a considerable part of today’s life and is present everywhere around us.
Nearly every device, including smartphones, TVs, fridges, and many more, is connected as part
of the internet of things, and we rely on them to be safe, secure, and respect our privacy. The
same trends are also entering more critical domains such as health care. For example, modern
medical imaging devices such as computer tomography scanners or ultrasound machines come
with a network connection and a software application that allows storing and managing the
images centrally and specialists to access these from anywhere. Furthermore, modern software
systems tend to be used on a long-term basis in environments prone to changes, and at the same
time successors of a software system are developed rapidly. Here, a successor is often a variant
of the previous system as significant parts are reused. Besides, multiple variants of a software
system can exist at the same time, e.g., computer tomography scanners supporting a different
number of acquired slices. In all cases, all changes, e.g., due to maintenance or extension, have
to be continuously reflected in the whole software system, including all variants. These trends
result in significant challenges regarding the correctness changes and the security of evolving
software systems or their variants.

Traditionally, manufacturers of devices ensure their products’ security by providing legal cer-
tifications. However, concerning today’s short product cycles and the vast amount of product
versions, certifying each product manually is impossible. For achieving a certification, it is neces-
sary to consider all security-relevant aspects of the software system, which requires a substantial
manual effort and is error-prone. Due to these circumstances, a product is certified quite often
after its successor on the market has already replaced it. An example of this is smartphones
certified for use in critical positions. The SiMKo 3 high-security cell phone, which was certified
in September 2013 for usage by the German government [1], was based on a Samsung Galaxy S3
that was released in May 2012 and replaced by the Galaxy S4 in March 2013. Also, even minor
bug fixes are often not allowed without losing the certification of a product. One missing key
to improve security is integrated tool support covering all software development phases. Tool
support can reduce the manual effort required for certification and avoid mistakes during the
certification. Furthermore, tool support can already support avoiding security violations during
implementation. Nonetheless, the discussed trends continue to complicate keeping up with the
ever-changing security precautions, attacks, and mitigations that are vital for preserving a soft-
ware system’s security. Therefore, it seems reasonable why a recent developer study pinpoints
security as the number-one concern to be addressed by future software analysis tools [293].

A widely accepted approach for the successful development of software systems is Model-
Driven Development (MDD) [2, 3]. MMD allows planning a software system’s design upfront on
an abstract level before implementing the software system. This development approach allows
developing a well-structured software system, that can include systematic variation points for
future extensions or variants of the software system. Furthermore, it enables us to address secu-
rity issues in the early phases of the software design, such as in models specified at design time
using the Unified Modeling Language (UML) [4, 5]. In many domains, establishing such appro-
priately documented design-time artifacts is mandatory due to legal requirements. For example,
in the medical domain, for medical device software, the ISO/IEC 62304 standard requires various
documentation artifacts based on the criticality of the medical device [6]. These artifacts range
from the development planning documentation, the documentation of requirements through the
planned software design to the concrete software implementation of the medical device. All these
artifacts are created when following the model-driven development approach [7]. Unfortunately,
the documentation artifacts created at model-driven development are often inconsistent with
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the software system’s current state [8]. Such an inconsistency can lead to significant effort for
harmonizing all artifacts before a certification.

One reason for this inconsistency lies in the way how software is developed. In the past, pow-
erful IDEs, e.g., supporting near real-time syntax checks and fast compilation, were not available,
requiring developers to think more about the source code upfront and write down large fragments
in one go before executing and testing the new fragment. Although this allowed the implementa-
tion of amazing software systems, e.g., the Guidance Computer of the Apollo 11 mission [9], the
manageable complexity was limited. In contrast to this, considering how software is developed
nowadays, programming practices often incorporate consecutive steps of edits, updates, refine-
ments, and other enhancements at the source code level to improve a program under development
and meet ever-changing requirements incrementally [10]. In other words, programs consecutively
evolve throughout their entire life-cycle due to the nature of modern software engineering [11, 12].
Moreover, continuous evolution also means that programs are prone to internal decay due to the
often ad-hoc nature of program edits which may cause software systems to arrive at incomprehen-
sible or even inconsistent states eventually. Such a decrease in design quality is called software
aging [12] and often leads to an increase in the effort required for extending and maintaining a
software system. Simultaneously, these low-level implementation changes are often not reflected
in the software system’s design-time models. Such inconsistencies might result in certification
issues as the delivered design-time artifacts are not compliant with the implementation.

Usually, a software system is specified at the implementation level using a high-level program-
ming language. These languages provide an abstraction from low-level languages close to CPU
instructions, such as Assembler [13]. High-level languages mainly differ in their syntax as well as
the programming paradigms realized for abstraction. Currently, one of the most used paradigms
is the object-oriented (OO) programming paradigm [14]. This programming paradigm is an
essential milestone towards improved program modularity and maintainability. Object-oriented
programming concepts allow for enforcing essential program and data structures, e.g., through
applying design patterns [15].

In practice, due to the continuous evolution, software systems need frequent restructuring
to stay within the desired patterns. To support the efficient restructuring of a software system,
refactorings have been proposed and documented in a human-readable form [16, 17]. As a
consequence, tool-support for conducting (semi-)automated program refactorings has become an
integral part of modern Java IDEs such as IntelliJ IDEA1 and Eclipse2. Despite intense studies
and widespread application, a verifiable specification of refactoring operations and the execution
of this specification is still an open problem. The same applies to the interaction of refactorings
with non-functional properties of the software system, such as security.

Furthermore, when a company develops a new product, the software is nearly never written
from scratch. Instead, there is a significant amount of reuse among the company’s different
products [18]. Often, a company’s products are developed as variants of a variant-rich software
system, which is also often referred to as a software product line. Thereby, the software product
line contains a base part contained in every product and variable parts specific only for one or
more products. However, for a product’s certification, this specific product’s software will be
reviewed and certified. Usually, there is no reuse among single certifications [19]. The variability
introduced by this extensive reuse among products leads to a second challenge. For products
with many variants and variations, it is infeasible to check every product within a reasonable
time, e.g., regarding OO design quality or security. For example, considering OO design-quality
checks, a single anti-pattern detection for a medium-sized program with around 50k lines of code
already takes around 20 minutes for a single product [20]. If we want to check the entire product
line product by product, the test takes over 100 years if the product line contains 22 independent
features. Every feature can be selected or not selected, giving two possible states per feature
resulting in 222 = 4, 194, 304 possible feature configurations. As every check takes 20 minutes,
checking all configurations takes 8.3886× 107 minutes or 159.6 years.

To summarize, the increasing amount of security-critical data and faster changing environ-
ments are a burden to develop secure software systems. Nevertheless, there are already some
approaches to tackle the single sub-problems.

1https://www.jetbrains.com/idea
2https://www.eclipse.org

https://www.jetbrains.com/idea
https://www.eclipse.org
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1.1 Problem Identification

Considering the outlined trends one can assume that these are tackled by existing solutions suf-
ficiently. Unfortunately, in summary, these different improvements in technology for supporting
software development processes are not enough to compensate for all of these trends compli-
cating the development of secure and long-living software. Especially, the demand for security
planning and compliance in combination with continuous change throughout the whole life cycle,
eventually, in combination with variants of a software system, is challenging. Considering exist-
ing solutions, we identify open problems regarding the development and maintenance of secure
software systems.

Non-integrated solutions: For supporting the successful development of secure software sys-
tems, various approaches have been developed. First, there are high-level programming
languages that allow effective structuring and reuse within a software system, e.g., follow-
ing the OO paradigm. Refactorings support the structuring of the software for constantly
preserving a maintainable structure of the software system throughout development. Also,
approaches like MDD allow the planning of the software system’s structure. However, such
solutions mostly neglect essential aspects like security, have not been evaluated on more
practical subjects, or do not cover the whole development life cycle of a software system.
Considering MDD, there are approaches that allow developers to include security consid-
erations from the very beginning [5]. In the best case, these security considerations can be
reused until certification of the final product. In practice, there are many non-integrated
solutions that do not allow reuse or might be entirely incompatible.

Inconsistency and missing traceability: Often, a software system’s initial security require-
ments specification and the created documentation are inconsistent with the implementa-
tion’s later versions [21, 22]. The continuous changes in the security assumptions and the
design of software systems, for instance, due to structural decay [12], have to be reflected in
both the design-time models, e.g., UML models, and the software system’s implementation.
Furthermore, the implementation can include additional artifacts such as program models,
e.g., used for static analysis or verification. Currently, the developers need to manually
trace among the different available artifacts to identify and apply a necessary change at
proper locations in the software system concerning the corresponding artifacts. The effort
to create such correspondences after the fact is still high even if this process is guided by
tool support, e.g., for creating a correspondence model between design-time models and
source code [22]. Also, there is no approach providing an assisted development methodology
covering multiple phases and supporting roundtrip engineering. Thus, we have to maintain
correspondences between different artifacts used in the different development phases from
the very beginning and automate the underlying mapping process as much as possible.

Security-aware restructuring: As software systems are continuously subject to changes, we
also have to continuously check their security compliance, e.g., with design-time security
requirements or obligatory standards. In the best case, we can evaluate the desired change
before applying it to the software system. A problem often mentioned by practitioners is
that they cannot apply simple refactorings to a software system without losing the certi-
fication of the system. Although there are catalogs of well-defined refactorings [17] and
approaches to check their applicability [23], we still have to solve two problems. First,
even when the applicability of a refactoring has been checked, these are often applied in
an ad-hoc manner. Accordingly, there is no guarantee for the correctness of the refac-
toring operation that is needed for preserving a certification. Second, current refactoring
approaches do not take non-functional properties, e.g., security, into account. In sum-
mary, security-preserving restructurings of the software system are required for supporting
the restructuring of security-critical systems without losing a certification or requiring a
complete re-certification.

Variant-rich software systems: Last but not least, all of these discussed measures must also
be applied to variant-rich software systems. The application of every single existing solution
to each product of a software product line is possible, but due to the vast amount of
possible products, this is not feasible within a reasonable time. Accordingly, we need means
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Figure 1.1: Concept of the GRaViTY software development and maintenance
approach.

for applying security compliance checks and security-preserving refactorings to software
product lines.

1.2 Outline of the Approach

To overcome the discussed problems, we propose the GRaViTY approach to support developers
in developing secure variant-rich software systems. The key idea is that developers should focus
on their tasks while everything else is automatically handled in the background. In this thesis,
we consider three kinds of tasks.

1. We consider the specification as well as the subsequent refinement of the software system’s
architecture,

2. the implementation of the software system following the specified architecture, and

3. the specification and enforcement of security throughout the whole development process.

Considering the discussed problems, multiple artifacts are involved in the development of
a variant-rich software system. Figure 1.1 provides an overview of the artifacts considered in
our approach, their relations, and activities executed on these. According to the figure, for
performing the three outlined tasks, we consider three kinds of artifacts:

1. design-time models, e.g., specified in UML,

2. source code, e.g., written in Java, and

3. a program model (PM) of the source code for automatically performing analyses.

Changes on any of these artifacts are continuously synchronized for covering the different
phases of software development, allowing developers to focus on their tasks. In the figure, this
synchronization is indicated by bidirectional arrows connecting the artifacts.

For allowing our approach to consider security and variability, the different artifacts are
extended with security as well as variability in terms of annotations. Here, we make use of
existing approaches as far as possible. For example, considering design-time models, e.g., on
UML models, we use the UMLsec profile proposed by Jürjens [5] for security annotations. For
variability annotations, e.g., on Java source code, we benefit from preprocessor-like variability
statements as defined in Antenna [24].

Using these extensions, we will present a synchronization between the different artifacts tak-
ing both security and variability into account. For this purpose, we utilize triple graph grammars
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(TGG), a model transformation language and tooling that allows incremental model synchro-
nization, and the UML inheritance mechanism. Such transformation languages can also be used
to specify and perform design analyses as already demonstrated for anti-pattern detection on
a single product in [20]. Following this example, we specify security compliance checks and
security-preserving refactorings for ensuring the software system’s security throughout the whole
development process.

For applying the developed checks and refactorings to SPLs, existing transformation tech-
nologies like Algebraic Graph Transformation (AGT) have to be extended to support variability.
Here, we consider AGT as realized in the tool Henshin [25] or Triple Graph Grammars (TGG)
of eMoflon [26]. Providing such an extension, we demonstrate how security compliance checks
and security-aware refactorings can be executed on a software product line efficiently.

1.3 Research Questions

Based on the problems identified previously and the outlined approach, we formulate five research
questions, that we will answer in this thesis. Figure 1.2 shows the location of the research
questions in the proposed software development and maintenance approach. First, traces between
security requirements on different system representations have to be established and maintained
automatically. For this reason, RQ1 focuses on the tracing and synchronization of the different
considered artifacts. In practice, many security-critical software systems have been developed
in the past, are still in use, and under maintenance. Accordingly, the second research question
(RQ2) aims to identify how we can support these legacy systems in the approach developed in
this thesis. The goal of the desired synchronization is twofold. On the one side, we will use the
generated trace links to propagate security requirements specified on the UML models into the
implementation. These trace links allow us to check security requirements on the UML models
and verify them on the implementation level using corresponding security checks considered in
RQ3. On the other side, all artifacts have to be kept synchronized after changes. Thereby,
following Figure 1.2, we consider manual changes on the UML models and implementation as
well as refactorings performed on the program model. Utilizing the generated trace links, we can
study the effects of changes on traced security requirements in RQ4. Finally, we study how we
can apply the developed solutions to software product lines in RQ5.

RQ1: How can security requirements be traced among different system representations through-
out a software system’s development process?

RQ2: How can we apply model-based security engineering to legacy projects that have no or
disconnected design-time models?

RQ3: How can developers be supported in realizing, preserving, and enforcing design-time secu-
rity requirements in software systems?

RQ4: How do changes within a software system affect its security compliance, and how can these
effects be handled?

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

To be more precise, we introduce the research questions discussed in this thesis in detail in
what follows.

RQ1: How can security requirements be traced among different system

representations throughout a software system’s development process?

Various artifacts, such as models or source code, are created during the development of a software
system. Following approaches like security by design [27], already on the initial design artifacts,
security requirements are planned and validated. These security requirements specified on model
elements have to be fulfilled on later models giving more details on the elements or their concrete
realization in the implementation. To ensure a software system’s security, we have to trace the
specified security requirements throughout all created artifacts. Thereby, we have to consider
continuous changes on the software system, e.g., due to ongoing development activities or main-
tenance. Also, in the context of such changes, we have to preserve the validity of the created
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Figure 1.2: Location of the research questions in the GRaViTY approach.

trace links. In principle, entirely reverse engineered UML models can be easily synchronized
when changes in one of the tracked elements occur as one-to-one correspondences are possible.
However, this is more challenging for elements not present in all system representations. Early
design-time models are on a different level of abstraction than the software system’s final imple-
mentation, hindering the direct propagation of security requirements into the implementation.
For answering this research question, we split it into three sub-research questions:

RQ1.1: How can we continuously create and maintain traces between design-time
models and the implementation?

Security requirements specified in the design-time models of a software system must be
fulfilled in the software system’s implementation. Thus, we have to be able to retrieve all
relevant parts of the implementation for a security requirement in the design models and
all related model elements for an implementation artifact. As all artifacts are subject to
continuous changes, we have to update the created trace links continuously. In the best
case, we even can include a synchronization of the involved artifacts as part of the updates
to avoid inconsistencies. (Section 6.2)

RQ1.2: How can trace links between design-time models with different levels of
abstraction be represented and maintained?

Usually, during the development of an extensive software system, multiple design-time
models with different abstractions are defined. Designers start with very abstract models
and go into more detail afterward. Thus, the models that developers model in early phases
have a different abstraction than later models or even models reversed engineered automat-
ically. Nevertheless, not only the models that are close to implementation, but the models
that are created early during design time have to be considered by our synchronization
approach. As we consider only models using the same language, we can also use the same
security extension. However, we have to study the tracing between models with different
abstraction levels. (Section 6.3)

RQ1.3: How can trace links be used to propagate design-time security requirements
into the implementation?

After creating trace links between all kinds of design-time models and the implementation,
we have to leverage these trace links for propagating the specified security requirements.
Different approaches might be suitable for propagating security requirements, depending on
where the security requirement is specified and to which destination we want to propagate
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the security requirement. For example, during a static security check of the software
system’s implementation, we have access to all trace links and the design-time models, while
this might not be the case at run-time. For this reason, we have to investigate different
ways of propagating security requirements among the different artifacts. (Section 6.4)

RQ2: How can we apply model-based security engineering to legacy

projects that have no or disconnected design-time models?

Many software systems that were developed decades ago, are still in use and are actively main-
tained. For such legacy systems, often no models are available or the existing models have been
created in the early phases of system development and are disconnected from the implementation.
As most legacy software systems have not been developed using the approach presented in this
thesis, the question is how these legacy systems can switch to using the introduced model-based
security engineering approach for further development and maintenance. As tracing between the
design-time models and the implementation is essential, we have to reverse-engineer these trace
links for legacy projects. Thereby, we distinguish between two kinds of legacy projects. Projects
that do not have design-time models and projects for which early models were initially created
but no traces have been maintained.

RQ2.1: How can we support legacy projects for that no design-time models exist
in model-based security engineering?

In the first case, design-time models and the trace links have to be entirely reverse-
engineered for applying the proposed approach. As in practice, many modeling tools come
with the support of, e.g., reverse-engineering UML class diagrams, this usually happens in
an ad-hoc manner. The extracted class diagrams are an independent snapshot of the cur-
rent state of a software system’s implementation. However, the two essential requirements
of tracing and synchronization for applying our approach are not fulfilled. For this rea-
son, we have to investigate how we can reverse-engineer models including a correspondence
model between the reverse-engineered models and the implementation that is compatible
with our approach. (Section 7.1)

RQ2.2: How can we migrate legacy projects that have models but that are discon-
nected from the implementation to model-based security engineering?

In the second case, we have to restore trace links to the existing design-time models.
Although we could just reverse-engineer new models, it might be beneficial to integrate ex-
isting models as these contain information about the intended design and even can contain
detailed information about the planned security. When we restore trace links with these
design-time models, we enable compliance checks concerning the initially expected state
of the software system. Furthermore, by transferring information, e.g., security require-
ments, specified in such design-time models, we can save redundant effort for specifying
these again, e.g., on reverse-engineered models. Accordingly, we have to reconstruct trace
links between early design-time models and the implementation in a format usable for our
model-based security engineering approach. (Section 7.2)

RQ3: How can developers be supported in realizing, preserving, and

enforcing design-time security requirements in software systems?

Various approaches have been developed to plan and verify required security mechanisms from
the early stages of software design. However, when it comes to verifying the implementation of
the security requirements in a software system, most checks have to be performed in manual code
reviews. One reason is the local scope of the single security analyses and the lack of automated
reuse. To effectively support developers in the implementation and verification of design-time
security, automated reuse of the security specifications and suitable checks for checking the
security properties on other system representations are required. Depending on where we want
to apply such security checks and how we will specify these, we can divide this research question
into three sub-research questions.



10 Chapter 1. Introduction

RQ3.1: How can we automatically verify a software system’s compliance concerning
design-time security requirements?

First, we have to find automated means to show the compliance between a software system’s
security design and its implementation. Here, the most relevant question is what do we
have to check on the implementation to show that the specified security requirements are
fulfilled. Also, we will study which other benefits we can gain from propagating design-time
security requirements besides an immediate verification. (Sections 8.3, 8.4, and 8.5)

RQ3.2: How can formal approaches be used for the specification of security viola-
tion patterns?

One of the most significant issues with the current design- and security-analysis approaches
is their informal specification. For example, in the OO design domain, anti-patterns or de-
sign flaws have mainly been specified in a textual manner [28] and later been captured
using more formal approaches to overcome the incomprehensibility of the textual specifica-
tions [20]. The same applies to the domain of security. Security standards such as Common
Criteria are a vague and hardly checkable automatically on a software system. As in the
OO design domain, there are automatically checkable security rules, e.g., accompanying the
SEI CERT security standard. However, currently, these are very fine-grained and locally
checkable rules and still far away from common security standards. Moreover, existing se-
curity checks are often only available as ad-hoc implementations [28, 29, 30, 31, 32]. These
complicate the study of the side effects and make it even harder to apply identical changes
to all system representations. A promising approach to overcome these issues is graph
transformations that have successfully been applied to specify design flaws on a formal
basis [33, 20]. (Section 8.6)

RQ3.3: How can design-time security requirements be enforced at run-time?

Until now, we have been focusing on the static verification of security requirements on the
implementation level. However, when it comes to the security of a software system, there
are additional factors that interfere with the software system’s security. Specifically, we
have to ensure security compliance regarding design-time and development-time security
requirements at run-time. For example, due to statically not checkable circumstances such
as a change in a library or a newly discovered attack type, security violations can occur in
a software system that passed all static security checks. (Chapter 9)

RQ4: How do changes within a software system affect its security com-

pliance, and how can these effects be handled?

The development of a software system consists not only of adding new elements, but also of
modifying existing elements. Both changes require the continuous update of the traces studied
in RQ1. However, as part of RQ1, we do not look at how such changes might affect security
requirements. Suppose we want to guide developers. In that case, we have to inform them if some
changes, which have automatically been performed by our tool support or manually by them,
affect security requirements. For example, this is of particular interest in the certified software
scenario [34, 35] where it has to be ensured that a change violates no security requirement.

RQ4.1: How can behavior-preserving refactorings be specified on a formal basis
and this specification be used for executing the refactorings?

Restructuring a software system to keep the system maintainable and extensible is a com-
mon practice in developing a software system [17]. Such restructuring operations are often
performed in an ad-hoc manner and are likely to alter the software system’s behavior.
Refactorings describe theoretically a systematic way to perform restructurings without al-
tering the behavior of the software system. However, despite the existence of graph-based
formal approaches to verify the correctness of a refactoring operation [23, 36], refactorings
are usually still implemented in an ad-hoc manner. The open question is how to apply a
refactoring operation that has formally been proven to be correct to a software system.
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RQ4.2: How do refactorings interact with security requirements, and how can
malicious interactions be prevented?

Furthermore, while correctly implemented OO-refactorings preserve behavior by definition,
they might affect security requirements, e.g., due to a necessary increase in an attribute’s
visibility. This way, incorrect refactorings might not only change a software system’s be-
havior but could create vulnerabilities in a software system. As refactorings will appear
in this thesis only in the context of automated tool support, e.g., to eliminate detected
anti-patterns as described above, we have to guarantee that the suggested refactorings
will always be compliant with the specified security requirements on all system representa-
tions. For this reason, we have to study how graph-based refactorings can be specified in
a security-preserving way. (Chapter 10)

RQ4.3: How can security requirements affected by arbitrary system changes be
identified end efficiently be rechecked for security compliance?

For ensuring a software system’s security, whenever a change is applied to a software
system, we have to check if this change violates any security requirements. The efficient
verification of security requirements after arbitrary changes is even more challenging than
verifying refactorings. Since we cannot check them in advance, we have to check every
security requirement on every system representation again. Especially for large software
systems with many security requirements, this can take much time. Using the trace links
established before, we can calculate which security requirements we have to check again
and which security requirements we do not have to check. Also, it regularly turns out that
previous security assumptions no longer apply. This leads to a situation in which every
published version has to be rechecked for security issues. If new security requirements are
specified on one system representation, trace links must be created to all relevant elements
in every system representation. For this reason, we have to study how we can efficiently
identify and recheck elements affected by changes for security compliance. (Section 8.6)

RQ5: How can we verify and preserve security compliance in variant-

rich software systems?

Often software systems come in many variants that share huge parts in common. Thereby, the
number of possible variants can quickly reach an astronomical scale making the security analysis
of every single product infeasible [37]. Nevertheless, for every single variant or product, we have to
ensure that it does not contain any security violation. Furthermore, we have to preserve security
compliance also in case of changes, e.g, in case of applied restructuring operations. Here, the goal
is to apply the developed security engineering approach also to variant-rich software systems.

RQ5.1: How can we specify variability throughout a software system, including
design-time models and security requirements?

To verify security compliance of variant-rich software systems, first, we need to specify vari-
ability on all considered artifacts consistently. Many approaches only consider a single kind
of artifact, when considering variability within variant-rich software systems, e.g., source
code. However, during the development of a software system various artifacts are created,
e.g., design-time models or source code. To allow security compliance checks, we have to
consider all of these artifacts in combination with the software system’s security require-
ments. For this, it is necessary to express variability consistently across these artifacts but
also concerning security requirements. Furthermore, we have to integrate these variability
specifications into our approach for continuous tracing among all artifacts. (Chapter 11)

RQ5.2: How can security violations be detected on SPLs?

After the consistent specification of variability across all artifacts, we have to investigate
approaches to check the product line for security violations. For scalability reasons, this
check must be performed without iterating over every product. Thereby, we have to sup-
port design-level and implementation-level security checks to consider model-based security
engineering to its full extend. (Chapters 12 and 13)
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RQ5.3: How can we apply security-aware refactorings to SPLs?

Like single-product software systems, also variant-rich software systems require frequent
restructuring to keep them maintainable. Considering their security, also in variant-rich
software systems we have to ensure that the refactorings do not lead to violations of se-
curity requirements. For this reason, we have to investigate applying security-preserving
refactorings to software product lines. Given a concrete refactoring operation, not only a
single variant should be refactored but all variants in which the refactoring is applicable in
terms of behavior preservation and security compliance. (Chapter 13)

1.4 Research Methodology

To answer the presented research questions and provide a solution to the outlined problems, we
followed the design science research methodology [38, 39, 40]. The goal of this research approach
is to develop artifacts that overcome current boundaries. Thereby, new knowledge is achieved by
building and investigating the application of the developed artifact. Accordingly, this approach
requires that, initially, a general solution concept is developed, which is afterward implemented
and evaluated. If necessary, the developed solution concept is adapted based on the observations
during application and evaluation until the desired goals are met.

We divided the topics of this thesis into small sub-problems with individual research questions
that can be investigated separately for solving the identified problems. Therefore, we are going
to solve them separately and incorporate them into one approach afterward. For every single
sub-problem, we followed the design science research approach.

Henver et al. defined seven guidelines for applying the design science research methodol-
ogy [38]. We followed these guidelines for performing the research presented in this thesis. In
what follows, we shortly introduce these guidelines and discuss how we addressed these.

Design as an artifact: When following the design science research approach, the primary goal
is to develop an artifact. The purpose of this artifact is to address and solve a relevant
problem. By developing this artifact, new knowledge on how to solve the problem is
gained. It should also be described effectively for allowing others to implement the artifact
independently, follow the knowledge gained, and transfer it to other domains.

In our case, the developed artifact is a tool prototype. As we divided our overall problem
into single sub-problems, we also developed artifacts for every single sub-problem. In
chapters 5 to 11, for each chapter, we introduce the developed artifacts in Tool Support
sections of the single chapters. Thereby, we present our artifact’s conceptual design and its
concrete realization for solving the sub-problems discussed in the single chapters. Among
the thesis, we frequently reuse artifacts introduced in previous chapters for developing the
next artifact. Finally, in Chapter 14, we show integrating all the single artifacts into one
coherent artifact.

Problem relevance: For acquiring new knowledge, a relevant and yet unsolved problem must
be addressed. Research following the design science research approach has to clearly outline
the relevance of the addressed problem, what in state of the art solves already, and which
open problems have to be overcome.

Following this methodology, we motivated the identified problem’s general relevance at the
beginning of this chapter and showed open problems when deriving research questions in
Section 1.3. Chapter 3 discusses the state of the art in detail and explicitly showcases
missing contributions for the identified open problems that have to be overcome. Also, at
the beginning of every chapter, we summarize the relevance of the single sub-problems as
well as missing contributions in detail.

Design evaluation: The feasibility of the developed artifact has to be demonstrated in a struc-
tured evaluation. For this purpose, among others, the evaluation’s objectives can be func-
tionality, completeness, consistency, accuracy, performance, reliability, or usability. The
evaluation itself should be performed using standard design evaluation methods, such as
case studies, controlled experiments, testing, or informed argumentations.

In this thesis, for every problem we solve, we present in detail how our solution works
and solves the identified problem providing an informed argumentation on the feasibility
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of the developed artifact. In addition, we evaluate every artifact regarding quantifiable
objectives in the Evaluation sections of every chapter. In total, we evaluate our artifacts
regarding 18 evaluation objectives. These objectives comprise the scalability, efficiency,
effectiveness, applicability, usability, usefulness, and correctness of the developed artifacts.
Finally, we showcase the overall approach’s feasibility using the combined artifacts on two
subject software systems in Chapter 15.

One common problem in this thesis regarding the evaluation of the developed artifacts is the
need for a suitable subject to perform an evaluation. We can easily get evaluation subjects
for all sub-problems dealing with source code using the available source code from open
source projects. For this purpose, first, we established an evaluation database containing
more than 30 well-known open-source projects. However, open-source projects usually do
not come with design-time models that play a central role in this thesis. To overcome
this problem, we reverse-engineered the needed models. The models created from those
open source projects are afterward used to study the graph transformation-related sub-
problems from RQ1. The biggest issue to deal with if we want to apply the constructive
design approach with a strong focus on evaluation is the lack of good sources for real-world
security properties as needed in RQ2 and RQ3. Existing approaches for detecting critical
sources and sinks in a program are promising solutions to this issue [41, 42]. We successfully
applied those approaches for partly extracting security specifications. In addition, we
manually extracted additional required information for the two case studies presented in
this thesis.

Research contributions: Research following the design science research approach has to pro-
vide its contributions clearly. For contributions achieved using the design science research
approach, possible categories are an artifact providing knew knowledge or applying existing
knowledge innovatively, an extension of foundational knowledge, and the development of
new methodologies for solving or evaluating a problem.

We mainly improve existing technologies to allow an application that was not possible
before or overcomes the current state of the art. For this purpose, we usually innovatively
apply existing technologies. Where necessary, we developed entirely new concepts. This
development of new concepts mainly applies to applying transformation rules that contain
variability themselves to product lines in Chapter 13. Finally, in the Conclusion sections
of the single chapters and the overall conclusion in Chapter 17, we discuss and summarize
the new knowledge gained at developing and evaluating the artifacts.

Research rigor: The design science research approach requires developing the artifacts and
their evaluation to be performed with rigor to ensure the obtained results’ validity. An
essential key part is the effective use of theoretical foundations and research methodologies.
Also, implications on the domain or a concrete application of the artifacts are essential.

When developing the artifacts presented in this thesis, we strictly followed the design
science research approach. Where ever possible, we built upon existing foundational works.
We only came up with new foundational extensions if the existing foundations were not
sufficient for solving the problem in terms of innovative reuse of foundational works. We
critically discuss our solution, its evaluation, and our implications in every chapter’s Threats
to Validity sections. We oriented all implications on our application scenario and tailored
these to be as realistic as possible.

Design as a search process: In design science, problems are usually solved in an iterative
process of developing a solution, evaluating it, and optimizing the solution based on the
evaluation. Often, a problem is studied first in a simplified version that iteratively gets
more realistic.

Throughout the whole research process, we followed this iterative approach. However, in
this thesis, we only show the final results of the process. However, this thesis is still struc-
tured along with our division of the overall problem into sub-problems, their independent
solution, and finally, the integration to an overall solution. This solution is a satisfactory
solution for the identified problem. However, in additional iterations, the generalization,
performance, or covered scope could be extended. We explicitly discuss possible future
iterations in Chapter 17.
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Communication of research: The presentation of the performed research plays the final es-
sential role in the design science research approach. Based on the presentation of the
research technology-oriented audiences should be able to reproduce the results obtained
and management-oriented audiences should be able to apply the developed solutions to an
organizational context.

This thesis builds the main presentation of the conducted research. However, most parts
of the research have already been communicated to mainly the scientific but also business
community in peer-reviewed conferences and journal publications. Appendix B lists the
preliminary publications supporting this thesis. Also, all developed artifacts and evaluation
data are publicly accessible on GitHub3 to replicate the research.

1.5 Outline

This thesis is structured into parts that contain coherent topics of this thesis. In what follows,
we outline the structure of the thesis and the contributions presented in the single chapters.

Prologue: This introduction is part of the prologue of this thesis. In the prologue we introduce
the relevant background for reading this thesis and outline the presented approach.

• In Chapter 2, we introduce the iTrust electronics health care system used as a running
example throughout this thesis.

• In Chapter 3, we discuss the state-of-the-art for the development and maintenance of
secure software systems. Thereby, we also introduce the background common to all
other chapters of this thesis.

• In Chapter 4, we demonstrate how the GRaViTY approach proposed in this thesis
works from a developer’s perspective. Thereby, we also show how it is supposed to
integrate with common development practices introduced in Chapter 3.

Tracing: For the development of secure software systems, tracing is an important concept. In
this part of the thesis, focuses on continuous tracing among a software system’s artifacts.

• In Chapter 5, we introduce our program model for representing the implementation
of a software system. This program model will be used by us to specify and apply
implementation-level security checks and refactorings.

• In Chapter 6, we discuss the automated synchronization of design-time models, the
implementation, and our program model. By applying the introduced synchronization,
a correspondence model is built. Combined with the UML inheritance mechanism,
we show how this can be used for tracing security throughout the whole development
process of a software system.

• In Chapter 7, we discuss how our approach can be applied to legacy projects. First,
by reverse-engineering design-time models from the implementation, and second, by
restoring trace links between existing models and the implementation.

Security: In this part, we focus on security checks and security compliance throughout the
software life cycle.

• In Chapter 8, we discuss how to statically verify a implementation’s compliance with
design-time security requirements. Moreover, we outline how we can generate addi-
tional benefits from tracing design-time security requirements into the implementa-
tion. Finally, we discuss in this chapter how we can specify security checks using formal
mechanisms and how to incrementally check for security compliance after changes.

• In Chapter 9, we investigate how design-time security requirements can be enforced
at run-time and how the design-time models can be adapted based on observations at
run-time for investigating security violations.
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Maintenance: For successful development of a software system on the long term, maintenance
is an essential part of the development. In this part of the thesis, we focus on a software
system’s maintenance.

• In Chapter 10, we discuss how object-oriented refactorings can be specified on a formal
basis and how our synchronization approach can be leveraged for actually executing
the refactorings specified in the aforementioned way. In addition, we investigate the
interaction of refactorings with security requirements and how we can specify security-
preserving conditions for refactorings.

Variants: In this part, we focus on model-based security engineering and maintenance on
variant-rich software systems.

• In Chapter 11, we introduce how variability can be specified throughout variant-rich
software systems, including variability on design-time UML models, the implementa-
tion, and the program model.

• In Chapter 12 we discuss how we can efficiently verify the security of such UML model
product lines.

• In Chapter 13 we introduce an approach for applying the security checks introduced
in Chapter 8 and the refactorings from Chapter 10 to software product lines.

Tool Support and Application: In this part, we introduce integrated tool support for the
model-based development and maintenance of secure software systems.

• In Chapter 14, we demonstrate how the single parts of our tool prototype, introduced
throughout this thesis, integrate with each other.

• In Chapter 15, we discuss the application of GRaViTY to the iTrust running example
as well as the Eclipse Secure Storage as a second subject system.

Epilogue: In this thesis’ epilogue, we discuss related works and conclude on model-based secu-
rity engineering covering a software system’s life cycle.

• In Chapter 16, we discuss works related to the contributions of this thesis.

• In Chapter 17, we conclude and discuss the limitations and assumptions of our ap-
proach. Furthermore, we discuss future research directions.
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Chapter 2

Running Example: iTrust

In many software systems, security issues can have dramatic consequences. For example, in
December 2019 a bug in a router led to 20,000 patient records being publicly available from
the Internet [43, 44]. One of the main security issues was insufficient access control for the
patient data in a management system for medical images. There was no internal access control
implemented, and everyone who was in the network of the doctor’s office had access to all patient
data. Besides, due to a bug in the router, there were open ports in the firewall which allowed
everyone on the Internet to get into the doctor’s office network. As a consequence, everyone had
unrestricted access to all the patient data.

During the treatment of patients, lots of data is generated that has to be stored and made
available to various experts. This ranges from the notes of a doctor at an office visit to large
images, e.g., created by imaging devices such as ultrasonic sensors or computer tomography
scanners. For the management of such data, Health Care Systems (HCS) are developed by various
companies and are used everywhere from small doctor’s offices to large hospitals. Besides the
commercial systems, Aminpour et al. reviewed the utilization of open-source implementations
for the management of Electronic Health Records (EHR) and identified 13 open-source Health
Care Systems [45], e.g., the iTrust system [46]. Throughout this thesis, we use the iTrust system
as the running example.

In what follows, we generally discuss the development process of such a Health Care System
and possible pitfalls. Afterward, we introduce the iTrust open-source implementation of a man-
agement system for hospitals as a concrete running example. Throughout this thesis, we use
iTrust for motivating and demonstrating the approaches we developed for answering this thesis’
research questions. For this reason, in what follows, we not only introduce the development of
software systems in the medical domain and particularly the iTrust system but also discuss the
relation to the research questions.

2.1 Development of a Medical Management System

In this section, we look at the development process of a medical management system. For
discussion purposes, we assume a fictive software company that is going to implement a new
management system for patient data. Thereby, we focus on security-related decisions during the
development process.

At first, the requirement engineers of the company collect requirements that the software
system has to meet. Besides considering classical functional and non-functional requirements,
domain-specific requirements from relevant standards must be observed, such as IEC 62304 [6]
and IEC 62366 [47] for medical device software. Furthermore, all requirements on the software
system must be checked for additional security implications, e.g., by automatically recommending
and including relevant standards or measures. As the project is dealing with personal data,
implementing appropriate access control is an example of such a security-implied requirement.

Afterward, in system design, software architects design the software system. The software
architecture created in this step has to address all captured requirements. As a consequence, the
required access control has to be reflected in the software system’s architecture. In the above-
mentioned vulnerable real-world system, access control for preventing outsider attackers had been
considered (including a router with a firewall), but no access control for insider attackers had been
planned. The fictive company lost track of this security requirement at working with architectural
models having different abstractions. Such missing or neglected security mechanisms, as well as
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flawed and insecure security mechanisms, should be automatically detected at design time. This is
a case of heuristic identification of conceptual or design problems during development. It requires
a representation that is formal enough for automated analysis and allows software architects to
connect different levels of abstraction to allow tracing.

The next pitfall for the fictive company occurs during implementation. The company skips
the implementation of a (previously required) security mechanism to save time and effort. In
addition, an inexperienced developer selects an inappropriate mechanism, e.g., a cryptographic
hash function that is generally considered secure but not strong enough for the hashing of medical
information according to a domain-specific standard. Automated tool support for developers,
such as monitoring of source code for security issues and compliance violations with security
requirements, could warn and help to prevent such security violations. If a security-related
design concept like access control has no trace to an adequate part of the implementation, a
warning can be provided to the developers. However, as such tool support was not available in
the fictive company, the two security violations stayed undetected and remained in the developed
health care system.

Configuration of the software system is yet another important part. In addition to internal
access control, the company also implemented a limitation of accesses per hour to harden the
software system against brute force attacks. However, the preconfigured number of accesses per
hour might lead to a denial of service if the software is used without adaption to the context,
e.g., a big hospital instead of a small doctor’s office. At run-time, it has to be ensured that the
security requirements are still fulfilled, in this case concerning availability.

Also, changes in the security assumptions will occur. For example, it has been recently
shown that SHA1 has become an insecure hash algorithm due to new attack knowledge. New
requirements may also be stimulated by unexpected observations at run-time, like several hundred
access attempts from a single IP address which leads to all accesses being blocked by the above-
mentioned access limit. Requiring dynamic IP address filters could be a decision by human
experts. This representation of technical problems and solution attempts should be retrieved in
a future case with a similar profile for informing problem analysis. While this example could be
easy to inspect using traditional log files, other security violations, e.g, due to an attack might
be harder to inspect.

Last but not least, the company started to develop custom-tailored variants for their cus-
tomers. After starting a new variant by cloning another variant a few times. For avoiding
duplicated effort, the company merged all variants into a single software product line from which
the variants are generated. However, this exacerbated the security problems of the company as
they had to generate all variants for inspecting them regarding security violations.

In summary, there are many pitfalls in developing a security-critical software system, and in
the scenario, we demonstrated some of them. Suitable development approaches and tool support
can help in preventing or mitigating the discussed security issues. However, as discussed in
Chapter 3, the current state-of-the-art comes with significant limitations. In the next section, we
introduce the iTrust system as a real-world example for a medical management system in detail.

2.2 The iTrust Electronics Health Records System

In this thesis, we present an approach for supporting developers in the model-driven software
development (MDD) of secure software systems. A suitable running example has to provide a
concrete implementation to which the approach can be applied but also suitable documenta-
tion to create the models required by the approach. For explaining our approach, we introduce
the iTrust case study, realizing a software system comparable to the one described above. The
iTrust electronics health records system is a web application for managing health data in hos-
pitals. In the introduction of iTrust, we only focus on artifacts that have been created by its
original developers. As the iTrust system has been used as a case study in various scientific
publications [49, 50, 51, 22], additional artifacts, e.g., design-time models, are available.

The iTrust case study has been developed as a teaching project at the North Carolina State
University, has been continuously extended by students over 25 semesters, and is publicly avail-
able [50, 46]. The first version of iTrust has been developed in the winter term 2004/05 and
the last version in the winter term 2016/17. Due to structural decay and outdated technologies,
starting with the summer term of 2017 iTrust has been superseded by iTrust2. Besides the source
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Figure 2.1: Excerpt from the use cases of iTrust.

code of the implementation, documentation of the software system’s design and requirements are
available. At the writing of this thesis, only the requirements of iTrust2 have been publicly
accessible [52]. The requirements of the original iTrust system have been provided to the author
of this thesis by the responsible persons of iTrust1.

The requirements of the iTrust system have been specified as use case descriptions. In the
last version of iTrust (version 23) these requirements comprise 79 use cases of which 36 have been
implemented in iTrust version 23. Figure 2.1 shows an excerpt from a use case diagram of the
iTrust requirements. The shown use cases are selected to give an overview of the iTrust system
and focus on the parts of the iTrust system used for explanations in this thesis.

The iTrust system comprises eleven roles of actors. In the shown use case diagram, we focus
on the two most important users of the system, patients and doctors. While there is an actor role
for patients in the system, doctors are represented with different roles based on their expertise
and association with patients. In the diagram, we can see an actor representing arbitrary Health
Care Personnel (HCP) such as doctors and the role of a Licensed Health Care Professional
(LHCP) that is an HCP that has been allowed by a patient to access all of her health records.
Other roles comprise additional medical staff, administrative staff but also representatives of
official authorities.

Patients and doctors can exchange messages with each other (UC30) and can arrange appoint-
ments (UC40) using the iTrust electronics health care system. Furthermore, doctors but also
patients can access the records created during the treatment of a patient (UC9 and UC28). Here,
the patient can only access her records and an LHCP can access the records of the patients she
has been licensed by. Regular HCPs cannot access any sensitive patient records. Any HCP can
document the examination of a patient in the system (UC11). Besides basic information, such as
the date and duration of the office visit, this can include the prescription of drugs (UC37), the
record of health records like the blood pressure (UC10), or the management of allergies (UC67).
All of these actions can also be performed by an HCP outside an office visit, e.g., during an
emergency procedure. For managing allergies, the functionality of editing health records is used.

1Thanks to Sarah S. Heckman from NCSU for her quick response and for sharing iTrust’s requirements with me.

https://people.engr.ncsu.edu/sesmith5/
https://www.ncsu.edu/
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57.1 Preconditions:

A User is a registered user of the iTrust Medical Records system (UC2). The User

has authenticated himself or herself in the iTrust Medical Records system (UC3).

57.2 Main Flow:

The User selects the option to change his or her password [S1]. The User fills out

required information to change the password [S2].

57.3 Sub-flows:

[S1] The user clicks link to change password.

[S2] The user enters the current password and the new password [E1].

57.4 Alternative Flows:

[E1] If the new password is less than 5 characters long and does not contain at least 1

letter and 1 number, the user is prompted to enter another appropriate password.

Figure 2.2: Use case description of the iTrust use case UC57 Change password
taken from the iTrust wiki.

To execute all use cases it is required that the user authenticates herself in the system first
(UC3). For the authentication, every user has a unique identifier, a medical identification (MID)
name, and a password. In the implementation of the system, the authentication is realized as an
initial login by the user. Also after authentication, the user can change her password (UC57).

As an example for a requirement from the iTrust specification, Figure 2.2 shows the require-
ment UC57 of a user changing her password. In iTrust, requirements are defined as quadruples
of preconditions, main-flows, sub-flows, and alternative flows. The preconditions state what is
necessary for the use case defined in the requirement to be executable. In UC57, there has to
be an account for the user and the user authenticated herself at the system. Most times, these
preconditions contain references to other use cases that have to be successfully executed. The
main-flow summarizes the main objective of the requirement and thereby makes use of sub-flows
and alternative flows for detailing the overall objective. In the given example, the main flow
consists out of two sub-flows. An alternative flow is used as part of the sub-flow S2 for specifying
the behavior if the new password does not meet defined security requirements. While main flows
and sub-flows can be always executed when the preconditions are met, alternative flows are only
executed under defined conditions.

The iTrust system has been implemented as a web application in Java using Java server pages
(JSP) for the front end. The application is executed on an Apache Tomcat HTTP web server.
Data, such as medical records or authentication information, is stored using a MySQL database.

Listings 2.1 and 2.2 show an excerpt from the Java implementation of the use case UC57 of
a user changing her password. The main functionality of this use case is implemented in the
class ChangePasswordAction. The most relevant part is the method changePassword, shown
in Listing 2.1. This method is called by the server pages as soon as a user submits a change
password form. Thereby, the MID of the user, the user’s old password, and twice the desired new
password is passed to the method. First, in line 13, the authentication service of iTrust is used
to authenticate the user using her MID and password. If the authentication was not successful,
an error message is returned. Otherwise, it is checked if the user entered two times the same
password to prevent typing errors in the new password. Next, in line 23 the method checks if the
new password meets all security requirements, e.g., has a suitable length. If this is the case the
password is changed using the method resetPassword of the authentication service. The method
resetPassword creates a connection to the iTrust SQL database and changes the password there.
The detailed implementation is shown in Listing 2.2. First, in line 8, a connection to the database
is created. Next, in line 9, a statement for updating the user’s password is prepared. The values
of the SQL statement are set in lines 12 to 14. The password is not stored in clear text but
hashed with a salt. This takes place in lines 10 and 11. In lines 15 and 16, the statement is
executed and terminated and finally, in line 20, the whole connection to the database is closed.

Figure 2.3 shows a screenshot of the welcome screen of a doctor after the authentication of
UC3. On the left-hand side, a navigation bar is shown, e.g., for accessing patient information as
described in UC28 or managing office visits as described in UC11. On the right of the navigation
bar, an overview of the upcoming tasks is shown for the doctor is given. For example, this
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1 package edu.ncsu.csc.itrust.action;

2

3 public class ChangePasswordAction {

4

5 private AuthDAO authDAO;

6

7 public String changePassword(long mid , String oldPass , String newPass ,

String confirmPass) {

8 String containsLetter = "[a-zA -Z0 -9]*[a-zA-Z]+[a-zA -Z0 -9]*";

9 String containsNumber = "[a-zA -Z0 -9]*[0 -9]+[a-zA -Z0 -9]*";

10 String fiveAlphanumeric = "[a-zA -Z0 -9]{5 ,20}";

11

12 //Make sure old password is valid

13 if(! authDAO.authenticatePassword(mid , oldPass)) {

14 return "Invalid password change submission.";

15 }

16

17 //Make sure new passwords match

18 if (! newPass.equals(confirmPass)) {

19 return "Invalid password change submission.";

20 }

21

22 // Validate password. Must contain a letter , contain a number , and be a

string of 5-20 alphanumeric characters

23 if(newPass.matches(containsLetter) && newPass.matches(containsNumber)

&& newPass.matches(fiveAlphanumeric)){

24 // Change the password

25 authDAO.resetPassword(mid , newPass);

26 return "Password Changed.";

27 } else {

28 return "Invalid password change submission.";

29 }

30 }

31 }

Listing 2.1: Excerpt from the Java class ChangePasswordAction, showing the
method for changing a user’s password.
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1 package edu.ncsu.csc.itrust.dao.mysql;

2

3 public class AuthDAO {

4 public void resetPassword(long mid , String pass) throws DBException {

5 Connection conn = null;

6 PreparedStatement pstmt = null;

7 try {

8 conn = factory.getConnection ();

9 pstmt = conn.prepareStatement("UPDATE users SET password=?, salt=?

WHERE MID=?");

10 String salt = shakeSalt ();

11 String newPassword = DigestUtils.sha256Hex(pass+salt);

12 pstmt.setString (1, newPassword);

13 pstmt.setString (2, salt);

14 pstmt.setLong(3, mid);

15 pstmt.executeUpdate ();

16 pstmt.close();

17 } catch (SQLException e) {

18 throw new DBException(e);

19 } finally {

20 DBUtil.closeConnection(conn , pstmt);

21 }

22 }

23 }

Listing 2.2: Excerpt from the Java class AuthDAO showing the method for
changing a password in iTrust’s SQL database.

Figure 2.3: Welcome view for doctors in the iTrust system.



2.3. Suitability of iTrust Concerning the Research Questions 23

Figure 2.4: Patient view on her diagnoses in the iTrust system.

contains messages exchanged with patients (UC30) or scheduled appointments (UC40). The top
bar offers role-independent functionalities such as the change of the user’s password (UC57).

Figure 2.4 shows a screenshot of a patient’s view on her diagnoses following the use case UC9.
For this patient, two diagnoses have been recorded. While the top bar is the same for every user
of the system, the navigation bar offers entries according to the role of the user.

2.3 Suitability of iTrust Concerning the Research Questions

In what follows, we discuss the suitability of iTrust for serving as the running example for this
thesis. In this discussion, we focus on the suitability to motivate the problems addressed by the
thesis’ research questions and the suitability to demonstrate the developed approaches on iTrust
for answering the research questions.

RQ1: How can security requirements be traced among different system representations throughout
a software system’s development process?

Because iTrust is located in the health care domain and due to the critical nature of this
domain, addressing security requirements is crucial. Following article 9 of the General Data Pro-
tection Regulation (GDPR) [48], medical data falls into a category for which additional security
requirements apply regarding the purpose of processing but also the secrecy of the data. These
requirements make iTrust a typical software system in a security-sensitive domain. Furthermore,
relevant standards, e.g., the ISO standard IEC 62304 [6], require tracing requirements throughout
the software development. Also, the technologies used for implementing iTrust correspond with
the technologies this thesis’ approaches support. On the implementation level, this technology
is the Java programming language and for design-time models, mainly the UML. While iTrust
originally has been implemented using Java, previous research created various design-time mod-
els [49, 50, 51, 22]. These design-time models also include security requirements. Altogether,
tracing of security requirements is essential for iTrust, and various development artifacts are
available allowing us to demonstrate the developed approaches.

RQ2: How can we apply model-based security engineering to legacy projects that have no or
disconnected design-time models?

For motivating the research question and demonstrating approaches for answering it, a legacy
system with two specific characteristics is required: It has been developed without design time
models, however, there are disconnected design-time models available. In this regard, iTrust
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fulfills both of these characteristics. As there are no design-time models available from iTrust’s
developers, we can investigate their reverse-engineering as considered in RQ2.1 of this thesis.
Furthermore, as part of the case studies, various design-time models have been reverse-engineered
manually, allowing us to effectively study RQ2.2 regarding recreating correspondences between
these models and the implementation.

RQ3: How can developers be supported in realizing, preserving, and enforcing design-time security
requirements in software systems?

As iTrust is located in an inherent security-critical domain, security engineering is essential
for developing software systems such as iTrust. In this regard, multiple previous works have
investigated security engineering on single design-time models of iTrust [49, 51, 53, 54]. However,
these works were restricted to single artifacts and mainly focus on the design-time planning
of security requirements or the adjustment of planned security requirements and measures to
changes in the security context knowledge. The enforcement of these planned or adapted security
requirements throughout the whole is currently not considered. Nevertheless, the availability
of design-time artifacts containing security requirements and changes within these requirements
allow us to effectively study and demonstrate the developed approaches for supporting developers
in realizing, preserving, and enforcing design-time security requirements in the iTrust system.

RQ4: How do changes within a software system affect its security compliance, and how can these
effects be handled?

The iTrust system has been developed over a long time and shows significant structural
decay that has lead to discontinuing its development. The fact that iTrust has been superseded
by iTrust2 due to structural decay, makes it a perfect candidate to study the maintenance
and security compliance of a security-critical long-living system as considered in this thesis.
Particularly, this allows us to study the security-preserving refactoring of iTrust, as considered
in RQ4, effectively. Also, the history of the iTrust implementation and changes in the health
care domain, e.g., the release of the GDPR, can serve as sources for security-relevant changes.

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

Considering iTrust’s deployment in multiple hospitals, it seems reasonable that these are
likely to have different requirements on the features supported by iTrust. For example, not
every hospital is likely to provide patients with access to the iTrust system. For this reason, it
could be that the iTrust system has to be deployed with this feature disabled. From a security
perspective, it would be desirable that the deployed system does not even contain this feature
avoiding exploits utilizing parts of the feature. Accordingly, there would be the need to create
a version of iTrust that does not contain the implementation of the use cases UC9 and UC19

and contains the use cases UC30 and UC40 only for doctors. Also, customers will likely request
additional features tailored to their needs [55].

Altogether, if iTrust was developed in a commercial context, e.g., by the fictive company
used for motivation at the beginning of this chapter, it would be likely that it evolves into a
variant-rich software system. Considering iTrust as a variant-rich software system, it has the
potential to contain variants in two dimensions:

time: As iTrust has been developed over 25 semesters, multiple versions of iTrust have been
released. Each of these versions can be seen as a variant of iTrust. Except for the first
version of iTrust, none has been developed from scratch but always based on the previous
version. Accordingly, there is significant reuse among the different versions.

space: By making specific features optional, e.g., because a feature has been tailored for a
specific customer, the possibility for multiple variants of iTrust emerges. While these
variants differ in detail, there is significant reuse among them,e.g., all variants will likely
contain the authentication of users as specified in UC3 of Figure 2.1.

While variants in time are present in the iTrust system, variants in space have not been
realized. Nonetheless, as outlined there is a significant potential for variants in space. We
investigate the introduction of iTrust variants in detail when answering RQ5 concerning model-
based security engineering of variant-rich systems.
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In this chapter, we outlined possible security issues in the development of security-critical
software systems such as medical management systems. As a concrete example for such a medical
management system, we introduced the iTrust electronics health records system. Throughout
this thesis, we use iTrust to demonstrate the presented approaches that help the fictive company
to avoid stepping into the outlined pitfalls.
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Chapter 3

State of the Art in Secure Software

Systems Development

In the last decades, various concepts have been developed to support the development and
maintenance of secure software systems. On the level of programming languages, concepts like
Object-Orientation (OO) [56] have been introduced to improve the structuring and reuse in pro-
grams. Those concepts have also been reflected in modeling languages like the Unified Modeling
Language (UML) [4]. On both, various kinds of security and design checks have been intro-
duced to support developers in developing secure software systems. Also, different development
processes have been proposed to structure the development and make it projectable. Besides,
additional concepts for giving early and constant feedback to developers have been developed
to follow these processes successfully. At this point, the most prominent one being continuous
integration. While there is an overlap between all of these concepts, these are only partly inte-
grated. In what follows, we give a short introduction to the enumerated concepts. Thereby, we
focus on how the concepts contribute to the development of a secure software system and what
are yet unsolved problems.

3.1 Object-Oriented Programming

Various programming paradigms have been developed to ease the implementation of a software
system and allow more complicated software systems. Currently, one of the most widely used
paradigms is Object-Oriented Programming (OOP). In the monthly TIOBE index of the most
popular programming languages, in January 2021, 8 of the top 10 languages are object-oriented
programming languages [14]. Among the considered languages, Java is the most popular object-
oriented programming language.

The key idea of OO is the encapsulation of data and functionality [57]. Objects internally store
data and communicate with each other through messages. Usually, fields of objects represent
data and methods the functionality realized by the object. The invocations of methods realize
the messaging between objects.

The object-oriented programming paradigm is an essential milestone towards improved pro-
gram modularity and maintainability. Object-oriented programming concepts allow enforcing
essential program/data structures, e.g., through design patterns [15]. Objects should comprise
coherent functionality and can therefore be maintained independently and be reused in different
contexts. However, in practice, especially when no detailed architecture has been defined up-
front, design patterns are likely to be overused. Still aiming at designing a perfectly structured
software system, developers can tend to compensate by locally over-engineering the software sys-
tem leading to architectures hard to maintain. In contrast to this, OO-designs can also quickly
get inextensible if patterns are underused. Object orientation often leads to complicated struc-
tures that might affect maintainability and security enforcement due to the manifold structuring
possibilities that come with object-orientation. In general, it is likely to get more security issues
the more complex a software system gets [58].

While the encapsulation of data and functionality was initially not thought of as a security
concept [57], one could think about using an object’s methods to add a security layer around
the state or data of the object [59]. However, as in many programming languages encapsulation
is not meant as a security feature, such mechanisms can be easily bypassed at run-time. For
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example, in the Java programming language one can use Java reflection to dynamically change
the accessibility of members [60].

In general, object-orientation added language constructs to many languages that are not
statically analyzable. One example is the polymorphism of objects, which is the possibility to
use a child type in its parents’ context. Together with constructs like dynamic class loading,
we cannot foresee all possible objects implementing an invoked method [60]. If we have security
assumptions on this invoked method, we cannot guarantee them statically. Such constructs give
rise to new kinds of attacks such as object-hijacks where attackers generate new instances of
objects, avoiding their proper initialization [58].

To summarize, in principle, object orientation allows the efficient creation and maintenance
of large software systems. However, abuse or misuse of the object-oriented paradigm quickly
leads to even more complicated and vulnerable software systems.

3.2 Restructuring and Adaption

Nowadays, practices in object-oriented programming incorporate consecutive steps of edits, up-
dates, refinements, and other enhancements at the source code level for incrementally improving
a program under development and to meet ever-changing requirements. In other words, pro-
grams consecutively evolve throughout their entire life-cycle. This evolution lies at the very core
of modern software engineering [11, 12].

However, continuous evolution also means that programs are prone to internal decay due
to the often ad-hoc nature of program edits which may cause software systems to arrive at
incomprehensible or even inconsistent states eventually. To describe this effect, Parnas coined
the term Software Aging [12]. In this regard, refactoring has been proposed as a countermeasure
for the negative consequences of software evolution [16, 17]. Refactorings are behavior-preserving
restructurings, usually, specified in a human-readable form.

Program refactoring aims at high-level restructurings of OO programs at the class–field–
method level to fit previously defined structural patterns without altering the observable behav-
ior. Most recent implementations usually rely on precondition-based program transformation
rules directly applied to the program’s abstract syntax tree (AST) [61]. Nevertheless, the com-
plex nature of those rules, including an interplay between syntactic pattern matching at AST
level and semantic constraint checking of properties that crosscut the AST, still makes refac-
torings prone to produce erroneous results potentially [62]. Although the problem of correctly
specifying and executing refactorings for OO languages like Java has been extensively stud-
ied [63, 64, 65, 66, 62, 67, 68, 69, 61, 70], a comprehensive and generally accepted OO refactoring
theory is still an open issue.

Also, the effect of refactorings on non-functional aspects such as security is often neglected.
While there are approaches for checking if a specific refactoring would change the observable
behavior [68], such guarantees are often not given for security.

3.3 Model-driven Software Development

As OO programs require easy to extend and maintain structures, software architecture got an
even more essential role than ever before. A common approach for structured development and
documentation of software systems is Model-driven Software Development (MDD) [71], in which
models are used in each development step. Models specified using the Unified Modeling Language
(UML), are common for the specification of software systems and can also be used in security
analyses. For instance, the UMLsec approach, introduced in detail later in this section, defines a
UML profile allowing developers to annotate UML models with security requirements and check
their conciseness statically [72, 73].

A paradigm in which the role of models is even more emphasized is Model-based Software
Development (MBSD). In MBSD, all details of the software system are expressed in models.
The final running software system is generated from the models, or the models are executed at
run-time [74].

In this work, we build upon the concept of model-driven software development [75]. Usually,
models are iteratively refined until these reach an abstraction that allows an implementation
of the architecture expressed by the models. In what follows, to give an overview of MDD,



3.3. Model-driven Software Development 29

UML UML UML Code

Domain
Model

Design
Model

Implementation
Model

Figure 3.1: Artifacts used in model-driven software development.
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Figure 3.2: Excerpt of a domain model for hospitals based on the model
presented in [77].

we will present different views on the iTrust case study following the classical MDD process.
MDD allows developers to specify the software system and its properties on a higher level of
abstraction than the source code level [7]. While MDD can cover many kinds of models, we
focus on UML models [4]. Often, UML models with three different levels of abstraction [76] are
used, as explained in what follows. Figure 3.1 shows the refinement hierarchy of the model kinds
currently considered by us from the most abstract model at the left to the final implementation
at the right.

3.3.1 Domain Model

The most abstract model is a domain model, specifying general properties of the domain in that
the software system to develop is located [76]. Domain models are used in the earliest phases of
software development to capture the general properties of a software system’s domain. Often,
domain models are specified using UML class diagrams to show common relations for all kinds
of software systems placed in the domain.

Figure 3.2 shows an excerpt of a domain model for hospitals. In hospitals, two kinds of
people play a central role, patients, and doctors who treat the patients. Both have a name

and homeAddress. Usually, a list of allergies is stored for patients and a list of the doctor’s
specialties. A doctor can examine a patient in an Examination and create a Diagnose as
part of such examinations.

When developers implement a software system for a hospital, e.g., like iTrust [46] for online
management of patient data, they have to support the concepts captured in the domain model.

3.3.2 Design Model

After the specification of the domain model, the domain elements realized in the software are
concretized in design models. Design models specify the design of the software system and how
the functionality is distributed among the software system, e.g., by structuring the software
system into components. Thereby, the foundation of an easily maintainable software system is
set by the appropriate use of well-known design patterns [15]. The design model’s definition is
the first point where we have to start to continuously use design and security analyses to ensure
the software system’s maintainability and security as early as possible.
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Figure 3.3: Excerpt of a design model for iTrust based on [51].

Figure 3.3 shows an excerpt of a design model for iTrust, based on a UML model reverse-
engineered by Bürger et al. [51]. In this model, different controls are specified for using the
iTrust platform, e.g., a login control, a control for documenting an office visit or for entering a
diagnosis, as well as a more detailed data structure than in the domain model.

The different controls specify essential actions that can be performed, e.g., the option to reset
the password in the login window. For a login of a user, the system needs the user information to
identify and legitimate the user. For this purpose, the LogInControl accesses the data available
in the User-object given to it.

This model details the data used by the system. For example, the classes User and Patient

can be seen as more concrete instances of the classes Person and Patient from the domain model
in Figure 3.2. For example, on the Person class, it is explicitly specified that the homeAddress

attribute, already known from the domain model, is derived from other attributes.
However, models with different abstractions are often created separately, leading only to

implicit inheritance relations. For example, assuming that we semantically have a generalization,
there should be an explicit inheritance relationship between the User in the design model and
the Person in the domain model. Without explicitly capturing such relations, these are likely to
be overseen and might result in errors.

3.3.3 Implementation Model

The precise functionalities of the planned software system are specified in an implementation
model. The implementation model is usually the first platform-dependent model and contains
information about the deployment or languages used to implement the software system. The
implementation model can directly be executed, used for code generation, implemented manually,
or a combination of all.

Figure 3.4 shows an excerpt of an implementation model showing how the iTrust platform
could be developed in a hospital. The shown model is based on an implementation model created
by the administrators of two hospitals as part of the VisiOn EU project [78]. We adapted the
original model to support the iTrust system. The VisiOn EU project’s goal was to create a
platform for visual privacy management [79]. For the evaluation of the developed platform, the
project included public administrations and private companies.

Inside the hospital, two servers are operated, one running the iTrust application and one
running a database as well as an authentication service. Doctors access the iTrust system from
the hospital’s local network. Patients can get access to their data from the outside but have to
authenticate themselves at the hospital’s authentication service.

In our approach, we assume the single models shown in Figure 3.1 to be iteratively refined
by developers until they reach a concrete implementation of the system. While it is a common
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Figure 3.4: Excerpt of an implementation Model for iTrust based on the pilots
of the VisiOn EU Project [78].

approach to create UML models with different abstractions iteratively, these are often not con-
nected explicitly, hindering the reuse of security-related information. The missing connection is
likely to give rise to divergences between the models but also their implementation. These diver-
gences can occur due to two reasons. First, they might already be introduced when a new model
is created. Second, divergences manifest due to missing or wrong co-evolution after changes on
one of the models.

3.4 Development Processes

For the successful development of larger software systems, different development processes have
been introduced. Currently, these development processes are mainly discussed regarding the
structure of the flow through the development. On the one side, there are the classic sequential
development processes with a strict order of development tasks. On the other side, the newer
agile development processes focus on many fast iterations.

3.4.1 Sequential Software Development

Sequential development models comprise many well-known development processes. Among the
most prominent processes are the waterfall model [80, 81] and the V-model [82]. The German
government requires their version of the V-model for all of their software projects [83]. Fur-
thermore, this development process is widely used to develop medical software [84]. Concerning
these facts, the V-model is currently one of the most used development models. For this reason,
in this section, we focus on the V-model.

Common to all sequential development processes is that the single development activities are
performed in a sequential order defined by the process. For an enhanced version of the V-model
that contains error handling, we show this order in Figure 3.5. Solid arrows depict the sequence
of development steps considered in the process and dotted arrows to which step one has to return
if an error is spotted. In general, the V-model is separated into two parts. First, on the left side
of the V-model, the development of the software system. Second, on the right side, testing steps
corresponding with the development steps from the left.

The execution of the development process starts on the top left of the V-model with re-
quirements engineering, goes over the system-architecture specification, the system design, the
software architecture, down to the concrete implementation of the software system at software
design. If any error is spotted during the execution of a lower part of the development process,
one has to go sequentially upwards to the step in which the error was made, fix it there, and
then propagate the fix sequentially downward.

After the software system has been implemented, the software system’s realization is sequen-
tially tested by going upward on the right side of the V-model. Thereby, we first have very
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Figure 3.5: Concept of the V-model development process.

fine-grained unit tests at the beginning and coarse-grained acceptance tests at the end. If the
acceptance tests are passed, the software system is deployed and goes into maintenance. If any
test resolves an error, this error has to be fixed in the development step corresponding to the
test step in which the error was observed. For example, if we detect an error in an integration
test, we have to start from the system-design step for fixing this error and start the development
process from there again.

The design-time models considered at MDD perfectly fit the V-model steps and are classically
developed following this process. First, the domain model is usually created in the requirements
engineering step. Different versions of the system model are usually specified in the system
architecture and system design steps. However, partly developers also tend to create a very
detailed system model in the software-architecture step. The detailed implementation model is
usually specified in the software-architecture step and software-design step.

One fundamental assumption of sequential development processes is that going to the next
steps is only allowed after the current step has been completed. In the original V-model, even
the error handling contained in our version is not included. Nevertheless, in practice, it is often
infeasible to strictly follow this process. Among others, reasons for this are changing require-
ments, e.g., new functions wished by customers or changes in the security context knowledge
that have to be addressed. It is often very challenging to predict the requirements on the models
to be created in the current steps later steps might have. This challenging prediction tends to
lead to complex architectures to avoid getting stuck in later steps. Also, it is essential to detect
problems, e.g., possible security issues, early for the success of software systems developed using
sequential software development processes.

3.4.2 Agile Software Development

To overcome the inflexibility of traditional sequential development processes, agile development
processes have been proposed. The key idea of such development processes includes many and
fast iterations instead of finishing a specific step before going to the next step [85]. This iterative
way allows reacting to changes at the beginning of each iteration quickly. One of the most
prominent agile software development processes is Scrum [86].

In Scrum, all requirements on the software system are collected in a Product Backlog. Based
on the product backlog, a development goal is defined that can be reached with 2 to 4 weeks.
The phase of reaching this goal is called a Sprint. During a Sprint, developers synchronize daily
following strict communication rules. At the end of a Sprint, the developers assess together with
the customers whether a Sprint’s goal has been reached or not. Also, they assess what can be
improved for future Sprints. After a Sprint, the subsequent development goal is defined based
on the Product Backlog. Thereby, it is explicitly intended that the Product Backlog can change,
e.g., due to the customer’s new needs. Work continues this way until all requirements in the
Product Backlog are fulfilled.
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For working with Scrum, specific roles are defined for developers, customers, and management
participating in the development of a software system [87]:

Product-Owner: A person only dedicated to communicating with the customers and collecting
their requirements in the Product Backlog.

Team: A group of not more than 10 developers with different expertise required for successfully
implementing a Sprint goal.

Scrum-Master: A person that organizes the developers and enforces the adoption of the Scrum
rules within a team.

While, e.g., for many certifications, no specific development process is required, often artifacts
that are usually created during MDD, are required for certification. Accordingly, the question is if
it is possible to work with Scrum or other agile methods compliantly. Here, often the assumption
is that Scrum only focuses on the Product Backlog and code. However, during a Sprint, any
artifact required by a stakeholder can be created. These artifacts explicitly also include models,
e.g., required for documentation or certification purposes. In contrast to sequential development
approaches, all models will iteratively grow [88], and in this iterative process lies a considerable
risk of inconsistency.

Scrum has been shown to be more efficient in adapting customer’s needs than sequential
development approaches due to the many fast iterations in rather small software systems [89].
Here, an often asked question is whether this also works for the development of large software
systems. While a team of developers is small in Scrum to ensure efficient communication, it is
explicitly considered that multiple teams can work in parallel. However, this even increases the
challenge of integrating the work and keeping all artifacts consistent.

All in all, the main challenge for applying Scrum or other agile development approaches to
software systems that require design-time models lies in the iterative way these will be developed.

Development processes aim at structuring the development of software systems for the suc-
cessful development of software systems. Independent of the concrete used development process,
keeping all artifacts consistent is an inherent challenge. However, this threat mainly impacts
agile processes. While in sequential processes changes always occur on a specific artifact at a
time and simple propagation rules can be used, in agile processes, all artifacts can be changed at
any time. Also, detecting problems early is essential for the successful development of a software
system. Here, agile processes can benefit from the many fast iterations but the detection of
problems is still challenging.

3.5 (Security-)Compliance & Certifications

For showing that a software system is secure, compliance is an important term. In this thesis, we
consider compliance in two different contexts. First, there is the implemented software system’s
compliance with its documentation and specification, e.g., the design-time models. This compli-
ance is essential for successfully implementing, extending, and maintaining a software system.
Usually, this compliance is a prerequisite for second context. This second context is compliance
with legal obligations, e.g., security obligations derived from the GDPR. For this purpose, various
standards and certifications have been developed. Such certification can show that a software
system is compliant with a specific standard and be required for a software system to be released.
For the development of secure software, various standards and certifications have been developed
for verifying the security compliance of a software system.

3.5.1 Architecture Compliance Checking

Identifying the differences and equivalences between the planned and the implemented software
architecture is the goal of architecture compliance checking. The compliance checks can be
based on a static set of rules [90], dynamic monitoring of a running software system [91], or
a hybrid of both [92]. Considering the model-based development of a software system, one
can statically check the compliance of a software system’s implementation with its design-level
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models. Generally, running compliance checks reveals the relations between a set of components
from two models. In the end, such a compliance check is based on an analysis of observed
correspondences between the design-time models and their implementation. In general, the
outcome of an architectural compliance check includes three types of relations.

Convergence: A compliance check reveals an expected relationship among the implemented
components. Convergence indicates that the implementation or a part of the implementa-
tion is compliant with the planned architecture.

Divergence: Divergence means that a compliance check reveals an unauthorized relation be-
tween the implemented components. In other words, the implementation diverges, and
therefore, is not compliant with the planned architecture.

Absence: The compliance checks reveal a relation among design-level components that were
not implemented. For this reason, a compliance violation is shown.

While it is easy to specify compliance in general, this gets more complicated when it comes
to compliance among models with different abstractions. Concerning this, it is important to
understand, what is the allowed degree of divergence due to the different abstraction and what
is forbidden divergence. Furthermore, the next challenge is executing a compliance check and,
in the best case, employing appropriate tool support for this compliance check.

3.5.2 Software Reviews and Audits

A common practice for the development of security- or safety-critical software system are reviews
and audits. The IEEE Standard 1028-2008 for Software Reviews and Audits defines five types of
software reviews and audits as well as how to perform these [93]. While a review usually targets
the continuous internal evaluation of a software system, e.g., regarding security or quality criteria,
and aims at improving the software system under development, an audit usually targets checking
the compliance with some standard by a third party.

Software reviews and audits are usually performed in a systematic manual inspection of the
implementation of the software system as well as its documentation. Accordingly, it involves a
huge manual effort, making reviews and audits expensive. Furthermore, for effective reviews and
audits specially trained experts are needed. Nevertheless, it has been shown that code reviews
can lead to an improved quality of a software system and fewer errors [94].

While the considered review techniques are very formal, there are approaches to incorporate
less formal reviews into every day’s development activities for getting benefits of software reviews
at a lower cost [95]. However, such reviews tend to focus on small defects that could also be
detected automatically at a lower cost. Improved tool support could improve both traditional,
structured software reviews as well as modern lightweight reviews.

3.5.3 Standards and Certifications

Usually, when we develop a software system for security- or safety-critical domains, we have
to follow standards for being allowed to bring our product to market. These standards usually
describe required development process steps, such as quality control, which we have to follow, and
artifacts we have to deliver. By doing so, a standard should be achieved that prevents users of our
software system from harm. Considering the iTrust example, in what follows, we will look into
two relevant standards in detail. First, the ISO standard for developing medical device software,
and second, the Common Criteria for Information Technology Security Evaluation (CC) as a
widely used standard for security certifications.

ISO/IEC 62304: Medical Device Software ś Software Life Cycle Processes

For medical device software, the ISO standard IEC 62304 specifies requirements for the develop-
ment and maintenance of medical device software and which artifacts have to be delivered [6].
Thereby, a piece of software itself can also constitute a medical device. While the iTrust system
itself does not consist out of hardware, its primary function is to plan and manage health data.
The iTrust system has to be considered as a medical device since one of its purposes is to collect
and analyze patient data collected from other medical devices and therefore has an immediate
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Table 3.1: Required documentation artifacts for medical device software fol-
lowing IEC 62304 (×: Required Artifact).

Software Documentation Artifact Medical Device Classification
Class A Class B Class C

Development Planning × × ×
Requirements Analysis × × ×
Architectural Design × ×
Detailed Design ×
Unit Implementation × × ×
Unit Verification × ×
Integration & Integration Testing × ×
System Testing × × ×
Release × × ×

impact on the treatment of patients. What exactly has to be considered as a medical device and
has to be developed following IEC 62304 is regulated in national laws [96].

Generally, the implementation of quality management, risk management, and a software
safety classification is required by the standard when developing medical device software. Thereby,
risk management explicitly includes software security. Furthermore, for the development of med-
ical device software, the standard requires five different development activities:

Software development: In the standard, the development is oriented on classical development
processes. Activities like requirements engineering, software architecture, implementation,
testing, and deployment are required but do not have to be executed following a specific
development process.

Software maintenance: The maintenance of medical device software must be planned explic-
itly and not be performed in an ad-hoc manner. Before any changes, a problem and possible
solutions have to be analyzed before realizing them.

Software risk management: The management of risks plays an essential role, as medical de-
vice software might cause serious harm to its users. Possible hazardous situations have to
be explicitly analyzed, measures to be chosen and verified. In this thesis, we will only focus
on security in this context. This analysis explicitly includes the risks caused by software
changes. In principle, the security and reliability of medical device software should be
achieved throughout software quality aspects, e.g., as defined in the ISO 25000 [97].

Software configuration management: Possible configurations of the medical device software
have to be explicitly identified and controlled, e.g., different versions of the software system
or possible configuration file values. While configuration might be considered partly in this
thesis in terms of deployment in the implementation models, we will not focus on this.

Software problem resolution: At the development of any software system, usually, problems
are faced that have to be documented, assigned to someone, solved, and their solution has
to be verified and documented. For the development of medical device software, there is a
specific process only focusing on this task. However, there are already reasonable solutions
available for providing tool support in practice, e.g., various issue trackers [98, 99].

When developing medical device software, specific development artifacts have to be developed
and delivered. Table 3.1 lists the development artifacts required by the IEC 62304. Thereby,
the standard differentiates between medical devices with different classifications. In the medical
domain, device software is classified into three categories based on the potential to harm people:

Class A: No injury or damage to health is possible.

Class B: Non-serious injury is possible.

Class C: Death or serious injury is possible.
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Please note that there is also a classification of the medical devices themselves (Class I to III)
that is independent of the software classification related to the medical device [96].

When looking at the required artifacts in Table 3.1, we notice these widely overlap with
the artifacts considered at MDD. The same applies to the development processes that have
to be performed for being compliant with IEC 62304 and the steps of the V-model. While the
standard is clearly oriented on a development process similar to the V-model and using MDD, the
standard does not require a specific development process. As long as quality management, risk
management, and safety classification are performed, and the required artifacts are delivered, any
development process can be used to develop medical device software. However, agile processes
have a massive challenge in keeping all artifacts that have to be delivered consistent and compliant
with each other. Also, risk management is a considerable challenge for the development of medical
device software. For security risks, the Common Criteria for Information Technology Security
Evaluation consider this challenge in more detail and are often applied to medical device software.

Common Criteria for Information Technology Security Evaluation

One of the most widely adopted security standards is the Common Criteria for Information
Technology Security Evaluation, often referred to only as Common Criteria (CC) [100]. The
CC has been released as the ISO/IEC 15408 standard. The CC is meant to specify the security
functional requirements (SFR) and security assurance requirements (SAR) on a software system
and to verify if a software system complies with these requirements. For both, the CC provides
recommendations that can be adapted to the specific software system.

Security Functional Requirements (SFR): SFRs specify concrete security functions the
software system should implement. To guide the selection of necessary security functional
requirements, the CC provides Protection Profiles that define security requirements for
typical classes of devices. Thereby, a software system can be certified against one or more
protection profiles. The specific security requirements that have to be implemented are
captured as Security Targets.

Security Assurance Requirements (SAR): The CC provides a set of measures that should
be considered to develop a secure software system to assure compliance with the security
functional requirements. Thereby, SARs are assigned to protection profiles and security
targets. Which amount of and to which depth the development has to be checked us-
ing SARs for showing the compliance with protection profiles is specified in Evaluation
Assurance Levels of the CC.

In practice, the CC mainly specifies which processes, e.g., a security threat analysis, have to
be performed and how these have to be documented. The CC does not specify specific security
features that have to be implemented and verified for the software system to be secure [101].
However, this does not mean that security check results do not have to be delivered for certifica-
tion but these are not inspected in detail as part of the certification. The CC focuses on whether
such approaches are used during a software systems development and these reports indicate this.
In conclusion, the CC is focused on security planning and documentation but not on verifying
the implemented security mechanisms in a software system.

To generally summarize on state of the art for standards and certifications, many artifacts
required in standards or certifications are tailored to these sequential development processes.
However, none of these explicitly requires such a sequential development process. Nevertheless,
there is a considerable challenge in preserving the consistency of the required artifacts during
development. Here, vast parts of reviews or certifications are performed purely manually. One of
the main challenges where tool support could help make these more efficient is the propagation of
security knowledge between the different artifacts and automated verification by security checks.

3.6 Security Checks

Certifications, e.g., according to Common Criteria (CC) [100], play an essential role in ensuring
the security of software systems. Usually, design specifications and test results have to be pro-
vided for the certification or a software audit. Which artifacts have to be provided depends on the
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assurance level of CC or other domain-specific standards, e.g., ISO/IEC 62304 for medical device
software [6]. The certification is usually performed manually, and incremental re-certification or
revocation is currently not supported in case of changed security context knowledge.

3.6.1 UMLsec Security Checks

Following the paradigm of security by design [27], security should be considered from the very
beginning of the development of a software system as a first-class citizen. As a consequence, also,
requirements engineering must address security requirements, which arise from three interacting
dimensions: threats, security goals, and system design [294]. In this regard, UMLsec provides
a UML profile for annotating UML models with security requirements and various checks for
checking the consistency of those security requirements. In what follows, we introduce two of
those checks that are particularly interesting for the design of a secure system, as they cover
the security requirements of data on both the logical and physical levels of the software system:
Secure Dependency and Secure Links.

Based on a variety of provided stereotypes, UMLsec supports various security checks, in-
cluding the analysis of security policies, secure information flow, and secure communication in
protocols. Stereotypes are one of the three extension mechanisms of UML and allow extension
with domain-specific language elements. Such an extension can then be used to annotate UML
model elements with those [4]. Similar to classifiers, stereotypes can have properties, which are
called tagged values. UMLsec operates at the level of class diagrams, deployment diagrams, ac-
tivity diagrams, sequence diagrams, and component diagrams. In the past, UMLsec has been
practically applied for security analyses in diverse contexts such as protocol engineering [102],
distributed information systems [103], and mobile communications [104].

Secure Dependency

UMLsec’s Secure Dependency is a check concerning the static structure of the software system.
It ensures that call- and send-dependencies between objects respect the security requirements on
the data that may be communicated along with them. Secure Dependency can be thought of as
a contract between calling and called objects. In the end, applying Secure Dependency results
in structuring the software system into security levels, e.g., regarding secrecy or integrity.

The following definition adapted from [72] addresses secrecy ; the integrity case is entirely
analogous. We assume that objects have a set of members, that is, operations and properties, and
a list of secrecy-stereotyped members, as can be specified using tagged values of the «critical»

stereotype. To be more precise, every Class or Component in a UML diagram can be stereotyped
with «critical» and the set of secrecy-stereotyped members is given as a list of signatures in
the tagged value secrecy.

Definition 1 (Secure Dependency) A subsystem fulfills secure dependency iff for all «call»
or «send» dependencies 𝑑 from an object C to an object S the following conditions hold:

(i) for all 𝑠 ∈ 𝑆.members: 𝑠 ∈ 𝐶.secrecy ⇔ 𝑠 ∈ 𝑆.secrecy,

(ii) for all 𝑠 ∈ 𝑆.members: 𝑠 ∈ 𝐶.secrecy ⇒ 𝑑 is stereotyped «secrecy», where 𝑠 refers to the
signature of a member.

For instance, for the class diagram in Figure 3.6, showing an excerpt of Figure 3.3, secure de-
pendency is not fulfilled: The class User specifies secrecy for the signature homeAddress:Address.
However, since LoginControl does not specify secrecy for homeAddress:Address as well, and
the «call»-dependency relating the two classes does not contain the «secrecy» stereotype,
properties (i) and (ii) are violated.

Using CARiSMA1, the tool support of UMLsec, security experts can find such violations
against the application’s structuring into security levels. The concrete violation of the example
can be mitigated by removing the violating dependencies or by adding the LoginControl to the
security level of secrecy for the violated security level of a member.

UMLsec secure dependency does not only allow us to detect such violations in the planned
design but also to recognize bad design decisions. For example, for the class User considered

1http://carisma.umlsec.de/

http://carisma.umlsec.de/
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LogInControl

 + data: User [1]

 + login()

 + resetPasswort()

 + chooseUser()

«critical»

User

 + password: String [1]

 + firstName: String [1]

 + lastName: String [1]

 +/ name: FullName [1]

 + streetAddress1: String [1]

 + city: String [1]

 + state: String [1]

 + zip: String [1]

 +/ homeAddress: Address [1]

«call»

{secrecy = {homeAddress: Address}}

Figure 3.6: Application of the UMLsec Secure Dependency stereotypes to
iTrust’s design model.

above, we will likely get many dependencies like the one from LoginControl. For each of these
dependencies, we have to consider starting from design-time until run-time the guaranties for
classified properties and operations. This will not only dramatically increase the annotations
needed by UMLsec but especially increase the effort needed for considering these in the upcoming
phases and verifying compliance with them. Accordingly, the probability of not being compliant
and creating a weakness will rise.

For this reason, requiring a tremendous amount of security annotations can also indicate
problems. In the considered class diagram, it is unlikely that the LoginControl requires the
property homeAddress:Address of the class Person for its functionality, but theoretically, has
access to this property. Accordingly, we have to provide the security guarantees required to
ensure the security of this potential access. If the same holds for other classes, it is a good
idea to extract the security-critical properties in a separate class that provides high protection
and is only accessed by entities that need access to the classified properties as part of their
planned functionality. By doing so, we can reduce the amount of security-critical dependencies
and already at design-time, start improving the software system’s security.

Secure Links

Secure Links is a check concerning the physical deployment of a software system. It analyses
whether the network of nodes with their communication paths respects the user-specified security
requirements concerning a given attacker model.

The check is formulated relative to a given attacker type, such as default or insider attackers,
with distinct capabilities of compromising the software system [5]. In Table 3.2, we show the
attacker model considered in this thesis. For each pair of an attacker and a kind of communication
path, a set of threats is specified. This section focuses on the threats posed by the default
attacker, which represents an outsider adversary with modest capability. This kind of attacker
can read, modify, and delete messages sent over a plain Internet connection, whereas in the case
of an encrypted connection, this attacker can only delete messages, e.g., using a fake GSM base
station to interrupt the connection between iTrust and the mobile device. However, a default
attacker would not be able to read the plain text messages or insert messages encrypted with
the correct key. Of course, this assumes that the encryption is set up in a way such that the
adversary does not get hold of the secret key. The default attacker is assumed not to have direct
access to the local area network (LAN) and, therefore, not to be able to eavesdrop on those
connections nor on wires connecting security-critical devices, e.g. a smart-card reader allowing
doctors to authenticate using their health professional card.

We recapitulate a definition of Secure Links for the security requirement «integrity» of
UMLsec [72]. A corresponding definition for the security requirement «secrecy» is obtained by
replacing the considered threat with read.

Definition 2 (Secure Links) A subsystem fulfills Secure Links iff for all «integrity» depen-
dencies 𝑑 between objects on different nodes 𝑛,𝑚, ∃ communication path 𝑝 between 𝑛 and 𝑚 with
a stereotype 𝑠 s.t. 𝑤𝑟𝑖𝑡𝑒 /∈ Threats(𝑠), where Threats(𝑠) is a set of threats posed by an outside
attacker to 𝑠-stereotyped communication paths.
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Table 3.2: UMLsec Secure Links attacker model.

default attacker insider attacker
read write delete read write delete

«Internet» × × × × × ×
«encrypted» × ×
«LAN» × × ×
«wire»

Hospital

«artifact»«artifact»«artifact»

«Internet»

«call, secrecy, integrity»

«LAN»

«encrypted»

AuthentificationService
«call, secrecy, integrity»

MobileDevice

Patient

iTrustServer WebServer

iTrust

«deploy» «deploy»«deploy»

Figure 3.7: Excerpt of the iTrust implementation model showing the applica-
tion of UMLsec Secure Links.

For example, in the deployment diagram in Figure 3.7, Secure Links holds under the con-
dition that the communication path between Hospital and MobileDevice is annotated with
«encrypted». Due to the «integrity»-stereotype dependency between Patient and Authen-

tificationService, Secure Links does not hold when only an «Internet» communication path
is available because outsider attackers can perform a man-in-the-middle-attack to compromise
integrity or threat secrecy by reading, e.g., the login data, on the unencrypted connection.

UMLsec has been proven in various applications to be effective in detecting security violations
in software systems. For example, among others, UMLsec has been successfully applied at the
German telecommunications company 𝑂2 [104] or the car manufacturer BMW [103]. However,
these applications are limited to single independent models and do not consider the hierarchies
created in model-driven development. For this reason, on every more detailed model, all security
specifications made before have to be repeated. Using approaches like UMLsec, developers
should specify all properties, like security assumptions, only once on the most suitable level
of abstraction. This also includes other artifacts than the design-time models, such as the
implementation of the software system. Also, the reuse between the different security checks can
be improved. For example, Secure Links considers communications between different artifact
and security requirements for these communications. In UML, internal details on artifacts can
be described using a class diagram whose classes can be manifested in an artifact. For example,
for a Java application, the artifact can be the executable jar-file of the application and other
artifacts can be libraries or databases. The classes bundled into the jar file correspond to classes
in UML class diagrams. The detailed class diagrams can contain dependencies between each
other that are instances of the dependencies in the deployment diagram.

3.6.2 SecDFD Security Checks

At design time, the processing of system data can be specified with a variety of notations. Apart
from UML activity diagrams [4], frequently used notations are and business process models
(BPMN [105]) and data flow diagrams (DFD) [106]. Our rationale for focusing on DFDs and
the SecDFD security extension is twofold: First, they are widely applied in practice, specifically
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Figure 3.8: A DFD for changing a password in iTrust.

in the automotive industry [107] and at Microsoft [108], as part of their STRIDE methodology.
Second, they represent an essential set of concepts necessary for data flow analysis (processes and
data flow between them), which can be mapped exhaustively to activity diagrams and business
processes, rendering our mapping generation technique also applicable to these model kinds. We
introduce our technique for DFDs, but it can be applied to a broad range of modeling languages
supporting data flow modeling.

In what follows, we introduce DFDs and an extended notation that allows to include security-
relevant information in DFD models, which is required for checking the consistency between
planned security and implemented security requirements.

Data Flow Diagrams

A Data Flow Diagram (DFD) is a graphical representation of the software architecture and the
information it handles [108]. It represents how the information enters, leaves, and traverses the
software system. The DFD consists of processes (active entities), external entities (e.g., third
parties), data stores (where information rests), data flows (carrying the exchanged information),
and trust boundaries (signaling trust levels). Figure 3.8 depicts a DFD for the iTrust electronics
health records system. A registered user attempts to change her by sending a request including
her identification number, the old, and the desired new password. The iTust system verifies the
user by authenticating her ID and password against a database. Next, if the old password is
valid, the password is reset to the new password and updated in the database.

Security Extension

To capture security requirements at the architectural level, we use the Security Data Flow Di-
agram (SecDFD [109, 110]). SecDFD is a notation that enriches DFD with security concepts
to enable a formally grounded information flow analysis, focusing on the confidentiality and in-
tegrity of information assets. First, comparable to UMLsec, assets can be tagged with a high
or low confidentiality label. Second, process nodes can be tagged with security contracts that
define how the security requirements of assets change upon exiting the node.

The SecDFD notation defines four such contracts:

Encrypt or Hash contract: The contract for encrypting input asset(s) always results in prop-
agating a low (public) label on the output flow(s).

Decrypt contract: If the input asset is labeled with low, decrypting it will result in propagating
a low label. However, if the input asset is labeled with high, decrypting will propagate a
high label on the output flow.

Join contract: The contract for joining two or more assets propagates the label equivalent
to the most restrictive input asset. For example, if a confidential asset is joined with a
non-confidential asset, the asset on the output will be confidential.
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Figure 3.10: UML activity diagram corresponding to the DFD in Figure 3.8.

Forward or Copy contract: This contract will copy the labels of the input asset(s) to the
output flow(s) carrying the corresponding forwarded asset(s).

Finally, the model elements can be grouped into attacker zones. An attacker zone specifies the
groups of elements that an attacker of a specific profile can observe. The user of the SecDFD
approach can define a hierarchy of attacker zones with different attacker profiles.

Figure 3.9 shows an excerpt (for clarity) of the SecDFD for the iTrust example. If a user resets
her password, she enters secret information into the software system, for which its confidentiality
has to be guaranteed. It has to be ensured that there is no unwanted data flow in the software
system and the password is not stored in cleartext. Also, it has to be ensured that the new
password not only stays secret but also cannot be maliciously modified. First, the designer
must specify that the password is confidential. Second, the designer needs to specify the process
contract, e.g., for the process authenticate. Since the password is confidential, it should not be
leaked to other applications running in the environment or processes outside of the authentication
service. These simple extensions allow us to identify such behavior in the model. The extended
notation [109] is shipped with a simple label propagation (using a dept-first search) according to
the specified process contracts. Once the labels have been propagated, a static check is executed
to determine if any confidential information flows to an attacker zone. In Figure 3.9, the Plugin
is not a malicious entity, i.e., it is not part of an attacker zone. The developer can manipulate
the elements of attacker zones to change the design model and improve security. For the concrete
syntax and semantics of SecDFD, we refer the reader to [109].

In contrast to UMLsec, SecDFD does not provide automated security checks but allows
for propagating security labels through the diagram, which eases performing manual security
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analyses, such as STRIDE. While SecDFDs can support security analyses widely used in practice,
the expressiveness of DFDs is very limited. For example, we know the sequence in which data
flows are executed, but this information is not part of the DFD. Also, conditional flows are not
supported. We do not know which data flows happen if the user’s authentication fails in the DFD
of Figure 3.9 and which flows in the case of success. To solve this issue, the generality of DFDs
allows us to apply the SecDFD security contract also to UML activity diagrams. Figure 3.10
shows the same procedure as in the DFD of Figure 3.8 but contains additional control flow
information. Every process is expressed by a corresponding activity and every data flow in the
DFD by a data flow in the activity diagram. In addition, activity diagrams contain control flow,
e.g., specifying what happens if the authentication fails.

An open issue for both approaches, UMLsec and SecDFD, is that a secure specification
of a software system does not imply a secure software system implementation. All security
requirements and measures have to be correctly implemented and verified in the implementation.

3.6.3 Implementation-Level Security Checks

Implementation-level security checks are realized often using static code analysis. Usually, such
static security issues are used to detect actual security issues already during software implementa-
tion before executing the software system. Thereby, the analysis tools are often integrated within
the development environments or build processes. Often IDEs already come with static code
analysis or can be extended with such. One example of such a widely used static code-analysis
that can be considered to contribute to the security requirement of availability is analyses for
potential null-pointer exceptions. However, there are also implementation-level security checks
that are only related to security. Besides such static security checks, three also exist security
tests [111, 112] and dynamic security monitoring approaches [113, 114] that check a running
software system in a test environment or the production environment. However, such security
monitors got less attention in the security engineering community than static security checks
that allow preventing security issues upfront. In practice, security tests are mainly executed as
manual penetration tests and run-time security monitoring barely plays a role [115]. For this
reason, we focus on static security checks. In what follows, we discuss three categories of static
security checks.

Analysis of API Calls

Many approaches locally analyze calls to critical APIs and whether the chosen parameters have
been selected securely. This covers, for example, calls to cryptographic APIs [116] or SQL
queries [117]. While those approaches are essential for the development of secure systems, in
this work, we are focusing more on whether, e.g., the use of a cryptographic API has been
implemented at a specified location.

Secure Data-Flow Analysis

A common approach to detect leaks of secret data is a secure data flow analysis. The goal is
to detect flows of sensitive information within the implementation into insecure sinks, e.g., a
file in the file system or a socket [118, 119, 32]. While data-flow analysis tools have become
very good at analyzing or approximating OO constructs such as dynamic class loading and Java
reflection [120, 121], one of the main problems for a precise data flow analysis is the classification
of critical sources and sinks. Many tools are based on shared libraries of well-known critical
sources and sinks, created manually or by machine learning [41]. However, including project-
specific information about sources of sensitive information and forbidden sinks is a substantial
manual effort.

Dependency Analysis

In practice, many vulnerabilities of software systems arise from the use of deprecated depen-
dencies containing the vulnerabilities. Due to the criticality of this issue, it was added to the
OWASP Top 10 Security Issues in 2013. Several tools have been developed to mitigate this threat
of deprecated dependencies for inspecting the dependencies of software systems for libraries with
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known vulnerabilities [122]. Among the most prominent tools are the OWASP Dependency-
Check [123] and the GitHub Dependabot [124]. However, such tools cannot assist in detecting a
malicious or accidental exchange of libraries at run-time.

While the single implementation-level security checks are very effective at their specific task,
the scope of these is very narrow. All in all, the open question is if implementation-level security
checks are suitable to check the high-level security requirements of the final software system.
The idea is that security is planned already at design-time, using the introduced security checks
and their tool support, and afterward are verified at the implementation level by suitable use of
implementation-level security checks.

3.7 Conclusion on the State of the Art

The development of a secure software system involves multiple aspects of planning, realiza-
tion, and verification. Considering all discussed aspects isolated, for every one of these different
aspects, satisfactory solutions have been developed. However, there are many unconnected so-
lutions for the individual local problems in total but no integration to apply these throughout
the whole development and maintenance process. Currently, for most integration or transition
steps, a massive manual effort is required. These manual tasks increase cost and the risk for
errors. All together, keeping all artifacts consistent is an inherent problem for model-driven
development, security certifications, and agile development processes. Another major challenge
lies in the propagation of security properties between different development steps and artifacts.
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Chapter 4

A Walkthrough of the Proposed

Development Approach

In the previous chapters, we discussed challenges in the development and maintenance of secure
software systems and existing approaches for tackling the different challenges. The main issue
lies in the tracing between different artifacts that are developed. Here, a huge manual effort is
required for keeping the artifacts consistent. This distracts a developer’s attention from her main
task and, therefore, lowers the efficiency. Moreover, the requirement of considering too many
things at the same time and the high effort required for preserving consistency might give rise
to more errors in the long term.

To overcome these challenges, in Section 1.3, we identified five research questions, focusing on
aspects required for improving the model-based development and maintenance of secure variant-
rich software systems. To allow continuous model-based security engineering, we mainly focus on
the automated tracing of security requirements throughout the whole development process and
their continuous verification. Generally, the idea of the GRaViTY development approach is to
create and maintain trace links between design and code artifacts automatically. The trace links
are used to propagate security-related information between models and the software system’s
implementation. Also, the trace links allow to automatically reflect changes on any artifact to
all other artifacts. Due to this continuous automated synchronization, that allows changing all
artifacts of a software system at any time, the GRaViTY development approach supports both,
sequential and agile development processes.

In this chapter, we discuss from a developer’s perspective how a secure software system can be
developed with GRaViTY to overcome the identified problems. As developers are a critical factor
in the successful development of software systems, we consider our conclusion of this discussion
when answering the research questions. For this purpose, first, we discuss our assumptions on
how to allow developers to work efficiently at the development of secure software systems. By
doing this, we derive key ideas on which we will build our solution. Afterward, we show the
development process for developing secure software systems using GRaViTY. Also, we show the
provided tool support and how it is integrated into this process. Finally, we demonstrate the
development using our approach from the perspective of a developer.

4.1 Key Ideas of the GRaViTY Approach

Developers play an essential role in the success of a software project. The more developers can
focus on their tasks, the more efficient they can be in solving these tasks. The primary goal of
GRaViTY is to enable the successful development and maintenance of secure software systems.
Thereby, the key ideas for allowing developers to efficiently work on the development of a secure
software system are:

Suitable Views: Developers should work on the most suitable view for their task.

For every task, there is a view in which this task can be carried out most effectively. For
example, when a security expert is planning or updating general security requirements of
a software system, an abstract view of the software system is more likely to be suitable
than the source code containing all details. However, due to circumstances from the used
development process or tooling, all the required information might not be available in
this view or the view cannot easily be created. For example, while a software system has
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initially been designed using UMLsec on abstract design-time models, due to missing trace
links, changes in the security requirements have to be specified on the implementation level.
Such situations should be avoided by the design of our approach and proper tool support.
Software developers and experts, e.g., security experts or software architects, should always
have to possibility to work on the most suitable view for their task.

Side effects: Developers should only focus on their tasks and should not have to care about
potential side effects.

Nearly every task a developer performs comes with side effects she has to think about. In
this thesis, we explicitly consider two kinds of side effects.

Local side effects: First, side effects within the artifact a developer is changing. These
are essential for preserving the correct behavior of a software system. Automated tool
support as part of a development approach can help in identifying such side effects. For
example, UMLsec checks allow detecting side effects of model-level changes impacting
design-time security requirements.

Global side effects: Second, in addition to local side effects, there might be side effects
on other artifacts. If these artifacts do not immediately relate to the correct function
of the software system, developers should not have to care about side effects on these.
For example, consider a developer optimizing a software system’s implementation-
level design quality. Most changes might not affect the architecture of the software
system, since they are too fine-grained and do not affect the borders of components.
In this case, the developer should not have to care about the effects on the architecture
during her task.
However, coming back to the suitability of views, an architect should also not have
to review the local restructurings at the implementation level of the software system.
Side effects that occurred and changed the architectural level should be propagated
to the architectural level.
Furthermore, refactorings might have side effects regarding a software system’s secu-
rity requirements, e.g., by making sensitive information accessible. Here, the developer
should still be able to focus on the code quality and tool support should take care of
preventing changes with such side effects.

To this end, following the GRaViTY approach, a developer should not have to think about
such side effects. The changes of the developer should be automatically propagated to all
other artifacts and then be presented to the corresponding expert for review. Also, tool
support should lower the risk of changes that lead to violations within other artifacts.

Synchronization: Developers can change artifacts in arbitrary order and their changes are
automatically propagated for keeping all artifacts synchronized.

Keeping all artifacts synchronized in case of changes usually requires a significant manual
effort and is likely to give rise to inconsistencies. Also, this step is a prerequisite for al-
lowing developers, architects, and security experts to work on the most suitable view of
the software system as depicted in the previous two ideas. Accordingly, the synchroniza-
tion of the artifacts should happen as far as possible in the background with as few user
interactions as possible.

Continuous Security: Developers are consciously assisted by automated security compliance
checks helping to preserve the software system’s security.

Continuous automated security checks are also an essential concept in other approaches,
e.g., SecDevOps [125]. We consider these in our approach but our goal is to go even one
step further.

Usually, when talking about continuous automated security checks, low-level security checks
with a limited scopes are meant. In our approach, we target the security compliance of the
implementation with the specification in design-time models. Nevertheless, security checks
with limited scopes, such as UMLsec that only targets the model-level, are essential to
ensure the consistency of the security specifications with which we check the compliance.
However, these automated security checks should not replace manual reviews but support
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Figure 4.1: Development process of the GRaViTY development approach.

these. Also, continuous automated security checks allow to review changes quicker and
studying their effects. This eases incremental reviews.

To summarize, we need a development process that allows developers to focus on their tasks
and allows them to perform the tasks on the most suitable view on the software system. In addi-
tion, such an approach might also assist in performing the tasks themselves. The consideration of
tool support can be a fundamental part of such an approach. However, in the intended GRaV-
iTY approach, tool support is not meant to replace developers, security experts, or software
architects but to assist them. While the desired tool support might not be easy to implement
from a technical perspective, the main challenges lie in the design of a development approach
supporting the outlined key ideas and in the underlying challenges that have to be solved for
realizing the approach.

4.2 The GRaViTY Development Approach

Next, we show the general development process using the GRaViTY approach and the auto-
matically executed tasks within this sequence. Figure 4.1 shows a conceptual overview of the
development using the GRaViTY development approach. We assume that three levels of design
models are used in addition to the concrete implementation of the software system. The artifacts
that will be created are shown on the left side of Figure 4.1. As soon as a model is created, it is
denoted by a circle representing an instance of the model or the software system’s source code.

Following the figure, we assume, that all models are created in the order of their abstraction
level and none is temporarily skipped. However, we do not assume that any of these models is
completed before the next one is created. Incrementally, developing the models in iterations is
explicitly possible and allows the usage of GRaViTY in agile development processes.

In agile development, the main development process has three initialization steps in which
initial versions of all models are created. In the fourth step, the development and maintenance
phase is reached, in which we iterate until the software system has been developed. If we want
to consider the maintenance of the software system, we stay in this step and iterate until the
software system’s end of life.

The blue area above the main development process arrow contains all artifacts available in
the current step of the main development process. Whenever a change is applied to any of the
artifacts, this change is propagated to all other artifacts that have been developed automatically.
The corresponding development activities are denoted in the figure by blue arrows.

A software system’s development is supported by security and quality reports covering all
artifacts that have been developed. Security and quality aspects are centrally reported into the
main development process, which is denoted by red, dotted arrows.
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Sequential Process Models: When using GRaViTY for the development of software systems
following traditional development processes such as the waterfall model or V-model, the
main development process only goes one step forward, after the model to be developed has
been finished. Also, the iterations in the development & maintenance step of GRaViTY
only take place at maintenance, meaning that the first iteration takes place when the entire
implementation is done.

Agile Software Development: When using agile methods for software development, nearly all
time will be spent in the development & maintenance step of GRaViTY. The initialization
will take place in only a few Sprints, creating the basic setup of the required models.
Afterward, these are iteratively refined in the following Sprints. Thereby, intense usage of
the synchronization provided by GRaViTY takes place.

4.3 Developer Perspective on Using GRaViTY

In Figure 4.2, we show the interaction of a developer with the software system under development
while using GRaViTY. The software system under development is depicted in the center of the
figure. Thereby, the software system consists out of the discussed development artifacts, namely
different design models and the source code of the software system. These artifacts as well as
their relations are shown in the center of the figure.

The GRaViTY framework is indicated by a cylindrical shape on the figure’s right side. This
shape connects all development artifacts and operates invisibly for a developer in the back-
ground. It takes care of synchronizing all artifacts in case of changes, the propagation of security
requirements, and security checks.

On the left of the figure, a developer is shown that can directly interact with the development
artifacts of the software system. In our case, interaction means that the single artifacts of the
software system can directly be edited by the developer, using an IDE into which GRaViTY
is integrated. This integration comprises user interfaces allowing developers to make use of
the GRaViTY tool support, e.g., by using refactorings for restructuring the implementation.
Currently, only the Eclipse IDE in combination with the Papyrus model editor [126, 127] is
supported. Within this IDE, GRaViTY continuously provides reports to developers, e.g., on
security violations currently present in the software system or details on the effects of planned
refactoring operations. Based on the reports, developers and experts can plan improvements to
the software system. For the generation of reports, GRaViTY considers all artifacts present in
the software system.

Whenever a developer edits a development artifact, e.g., by deleting and adding elements in
models or source code. These changes are propagated to all other artifacts by GRaViTY. For
example, the developer’s addition to the design model leads to a derived addition in the source
code and a deletion of elements in the source code leads to deletions in the implementation
model and design model. After every change, an updated report is created and presented to the
developer. This report can then be used for estimating the impact of the change but also be
shared with experts, e.g., software architects or security experts.

While working with GRaViTY, there should be no difference between working on a single
product or a variant-rich software system. A developer can still change the software product
line in her preferred way. Also, security and quality reports are continuously provided but now
consider the whole software product line.
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Chapter 5

Program Model for Object-oriented

Languages

This chapter shares material with the PPPJ’2015 publication łIncremental Co-Evolution of Java
Programs based on Bidirectional Graph Transformationž [129] and the TTC’2015 publications
łObject-oriented Refactoring of Java Programs using Graph Transformationž [128] and łA Solu-
tion to the Java Refactoring Case Study using eMoŕonž [129].

In this thesis, we study how to verify security compliance in the context of model-driven
development of software systems. To make the implementation of a software system analyzable,
we have to extract a suitable program representation from the source code of the software system.
Common representations, such as UML models [4] or abstract syntax trees (AST) [130], are either
too abstract for meaningful design-level quality and security analyses of the implementation or
are too detailed and not providing direct access to relevant information. For example, an AST
does not contain resolved references, which hardens analyses of access dependencies.

In this chapter, we introduce our program model for object-oriented languages. This program
model has a level of abstraction between design-time models, such as UML models, and models
close to the implementation, like ASTs. In the upcoming sections, we use this program model for
tracing security requirements between the architecture and the implementation, security checks,
and the specification and execution of security-preserving refactorings. In addition, this program
model has been used in additional research for design flaw detection [33, 20].

UML

Security Checks

Domain Model

Design Model

Implementation Model

Java

Program Model

Refactorings
Security Checks

Variability Variability Security 

Security 

Design-Flaw Detection

Figure 5.1: Location of the program model in the overall concept.

One of the most significant issues when automatically checking and changing programs is
defining and creating an appropriate program representation. According to Figure 5.1, the pro-
gram representation has to be suitable for checking security and design-related problems and the
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effects of countermeasures to eliminate the identified problems. As a foundation to find answers
for all five major research questions (RQ1–RQ5) of this thesis, we need a suitable representation
of a software system’s implementation on which we can work in the upcoming chapters. Also, in
the best case, we can use this representation not only for a specific programming language but
can achieve an abstraction allowing it to represent an object-oriented language. Altogether, such
a representation must provide a suitable level of abstraction that allows easy structural queries
without going to the statement level, and should be capable to represent arbitrary object-oriented
programs by a single program model type?

In this chapter, we introduce a general notion for representing object-oriented programs and
the dependencies within these programs on a method–field–class level. The notion is tailored
to allow easy queries on a high-level abstraction of the statement-level details of a program.
Although we orient on the Java programming language, we provide an abstraction to general
OO concepts allow representing arbitrary OO programs and discuss this application.

5.1 Background on Program Representations

The creation of meaningful and easy to analyze program representations has been a subject in
multiple different areas. First, the most native area comprises compilers that have to parse the
source code to compile it. For this purpose, in the first step, a compiler creates an internal
program representation of the source code, performs optimizations, and finally, transforms the
(optimized) program representation into binary executable code [131]. In the first step, the
compiler parses the source code and creates an Abstract Syntax Tree (AST) [130] from the source
code. The AST is a tree representation of the source code’s syntactic structure and is usually
built per method. These trees represent the semantic relevant information and do not contain any
interpretation of the information stored. For example, the execution sequence of the AST nodes
and variable accesses are not resolved. Usually, the AST is used as an intermediate representation
and is often converted into a Control Flow Graph (CFG) [132]. In a CFG, information such as
local variable accesses have been resolved and is directly accessible. Still, information such as field
accesses or calls of methods is not resolved. For these, the CFG only contains the information
that a field or method with a given ID from a given namespace is accessed.

Next, program representations have been defined for special purposes, such as checking the
validity of OO refactorings. To tackle the inherent problems of recent refactoring implemen-
tations operating at the AST level, graph-based program transformation has been proposed as
a promising alternative for concisely and formally specifying and implementing OO refactoring
rules comprehensively [23, 133, 134, 135, 23, 36, 136]. Here, the program under consideration is
transformed into an abstract and custom-tailored program model representation that essentially
(i) defines a restricted view on the AST containing only relevant high-level OO program entities,
and (ii) adds additional cross-AST dependencies making explicit (static) semantic information
being crucial to avoid behavior-scrambling refactorings [137, 135, 138, 139].

Furthermore, there are language-specific general-purpose program representations such as
MoDisco [140] or JaMoPP [141] for Java. These representations are comparable to CFGs known
from compilers. The significant difference lies in the scope of the model. While compilers focus
on single methods, program models are on the scope of the whole program. For this reason,
dependencies between methods and fields are resolved and explicitly represented by edges in
the model. Also, models such as the MoDisco model usually contain syntactically irrelevant
information such as comments. All in all, these models are specifically tailored to a version of a
programming language and are likely to get very large.

To sum up, graph-based approaches to program transformation and analysis rely on a well-
formed program representation through a program model that is suitable as an abstract view of
programs. To this end, each possible program model instance has to conform to a predefined
format, referred to as the type graph. The type graph can be seen as a metamodel of the
corresponding programming language, where nodes represent first-class program entities and
edges denote different kinds of relations between those entities. A concrete program model
instance whose nodes and edge labels conform to the given type graph is said to be (well-)typed
over the type graph. From a formal point of view, this requires a label-preserving graph morphism
between the program model’s nodes and edges onto the type graph, where graphs are labeled
over sets of types [142]. From a practical point of view, the type graph serves as a template
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containing all node and edge types and their possible connections that can occur in program
model instances. Edges may be further equipped with multiplicity constraints to restrict the
number of edges of a given type. For instance, the multiplicity 0..1 of a returnType edge,
expressing an object of which type a method returns, denotes that each method definition has
either exactly one or no (void) declared return type.

5.2 Program Model for Object-oriented Programs

Our program model provides a high-level abstraction from the pure Java source code [129]. This
abstraction, in principle, also allows the application to other OO languages. First, details from
the statement level are reduced to access edges between the single members. Second, easy to
query structures are created, such as structuring methods and fields into a tree with names,
signatures, and definitions.

Figure 5.2 shows our type graph for Java programs using a UML class diagram notation
for convenience. The type graph represents a high-level abstraction for structural entities of
object-oriented programs such as Java programs. The node TypeGraph serves as a common
container for each program element, thus building the root of the containment hierarchy. The
type graph contains an annotation mechanism that allows specifying annotations by extend-
ing the type TAnnotation. These annotations can be applied to all types with the attribute
tAnnotation:TAnnotation for providing additional information. In the remainder of this sec-
tion, we introduce the type graph elements in detail.

5.2.1 Namespaces

Object-oriented programs are usually structured into namespaces. Namespaces allow program-
mers to structure programs hierarchically, allowing them to group coherent functionality and
reuse names in different contexts. Even on procedural languages that do not support names-
paces, e.g., the C programming language, namespaces are often simulated using naming patterns.
In many languages, such as Java or the UML, namespaces are realized using packages. Following
these examples, we are also implementing namespaces using packages. The package structure
is represented by the node TPackage and a corresponding self-edge for relating parent packages
to their direct sub-packages. A package can contain an arbitrary number of types in terms of
interfaces and classes. This containment means that the type is defined in the scope of the
namespace represented by the package.

Listing 5.1 contains an excerpt from the Java class definition of the iTrust class EditPatient-
Action used for editing patient information such as the address of a patient. This class ex-
tends the class PatientBaseAction and uses the class PatientBean as a parameter in the
updateInformation method. The method receives a PatientBean that contains the information
entered in the UI of the iTrust system. For security reasons, the patient’s medical identification
number (MID) has to be set again to avoid the modification of the wrong patient in the database.
Afterward, the data is validated, edited in the database and a notification e-mail sent.

1 package edu.ncsu.csc.itrust.action;

2

3 public class EditPatientAction extends PatientBaseAction {

4 public void updateInformation(PatientBean p) throws ITrustException ,

FormValidationException {

5 p.setMID(pid); // for security reasons

6 validator.validate(p);

7 patientDAO.editPatient(p, loggedInMID);

8 emailutil.sendEmail(makeEmail ());

9 }

10 }

Listing 5.1: Excerpt from the Java source code of the iTrust class
EditPatientAction for updating the information about a patient.



56 Chapter 5. Program Model for Object-oriented Languages

TAccess

TClass

 tAnnotation : TAnnotation

TField

TFieldDefinition

 tAnnotation : TAnnotation

TFieldSignature

 tAnnotation : TAnnotation

TCall

TMember

 tAnnotation : TAnnotation

TMethod

TMethodDefinition

 tAnnotation : TAnnotation

TMethodSignature

 tAnnotation : TAnnotation

TPackage

tName : EString

 tAnnotation : TAnnotation

TParameter

 tAnnotation : TAnnotation

TSignature

 tAnnotation : TAnnotation

TypeGraph

tName : EString

 tAnnotation : TAnnotation

TRead TWrite TReadWrite

TAbstractType

tName : EString

 tAnnotation : TAnnotation

TInterface

 tAnnotation : TAnnotation

TName

tName : EString

[0..*] classes

[1..1] model

[0..*] classes[0..1] parent[0..*] subpackages

[0..*] childClasses

[0..*] parentClasses

[0..*] fields

[1..1] model

[0..*] overriddenBy[0..*] overriding

[0..1] previous

[0..1] next

[0..*] accessedBy

[1..1] target

[1..1] field

[0..*] signatures

[0..*] methods

[1..1] model

[0..*] overloadedBy [0..*] overloading

[1..1] method

[0..*] signatures

[0..*] accessing

[1..1] source

[0..*] hiddenBy[0..1] hiding

[0..1] staticType

[0..*] signature

[1..1] type

[0..1] returnType

[0..1] returnType

[1..1] type

[0..1] package

[0..*] ownedTypes

[0..*] defines

[1..1] definedBy

[0..1] outerType [0..*] innerTypes

[1..1] model

[0..*] ownedTypes

[0..*] interfaces

[0..*] interfaces

[0..*] childInterfaces

[0..*] parentInterfaces

[0..*] implementedBy

[0..*] implements

[0..*] parameters
[0..1] firstParameter

[0..*] definitions

[1..1] signature

[0..*] packages

 tAnnotation : TAnnotation

Figure 5.2: GRaViTY’s metamodel for language independent object-oriented
program models.
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Figure 5.3: Excerpt from a program model of iTrust showing namespaces and
the class hierarchy.

For this class definition, Figure 5.3 shows the package hierarchy in the program model of
these three classes and the interfaces Serializable and Comparable from the Java standard
library. In the center of the figure, we can see the default namespace of the iTrust application:
edu.ncsu.csc.itrust. The package itrust has two sub-packages, action and beans. The
package action contains the class EditPatientAction from Listing 5.1 and has another sub-
package base. We can see the packages representing the namespaces java.lang and java.io of
the Java standard library on the figure’s top left. As packages are only meant as representations
of namespaces and could be used both in libraries and user code, the information where a package
is defined is not encoded into the program model.

5.2.2 Types

As mentioned in the previous paragraphs, in our type graph, we define two kinds of types.
The node TAbstractType represents arbitrary types that can be concrete classes represented
by TClass or interfaces represented by instances of TInterface. It is a common practice to
allow the separate specification of interfaces and concrete implementation of the interface. For
example, in C-like languages, interfaces are specified in header files. The implementation of these
interfaces is specified in *.c files for C or *.cpp files for C++. Also, Java-based languages allow the
specification of interfaces that can be implemented by classes. For example, the program model
excerpt in Figure 5.3 shows the realization of the interfaces Comparable and Serializable by
the class PatientBean.

Many languages also describe some kind of enumeration for the definition of a finite amount of
constants. As there is a vast difference in how exactly these enumerations are realized, we decided
to represent enumerations by instances of TClass and to represent every enumeration constant
with a field owned by this class instance. The selection of classes for representing enumerations
instead of interfaces follows the possibility to include functionality in enumerations, e.g., as in
current Java versions. To indicate that the specific class represents an enumeration, we define
an annotation TEnumeration applied to classes representing enumerations.

5.2.3 Inheritance

As inheritance is one of the object-oriented paradigm’s main features, this has to be cap-
tured in the type graph. Here, we consider two kinds of inheritance. First, inheritance be-
tween interfaces, and second, inheritance between classes. Both are expressed in the type
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graph by a parent-child relation (parentInterfaces/childInerfaces and parentClasses/
childClasses). While multiple inheritance is only allowed for interfaces in many languages,
we do not restrict the type graph to single inheritance for classes to be as general as possible.

A concrete example of inheritance between classes is shown in the program model excerpt
of Figure 5.3. Following Listing 5.1, the class EditPatientAction extends the class Patient-

BaseAction. Accordingly, there is a parent-child reference between the corresponding two TClass
nodes on the right of the program model excerpt.

5.2.4 Methods & Fields

In object-oriented languages, functionality is specified in methods, and data is stored in fields.
The node TAbstractType contains an arbitrary number of members (abstract node TMember) in
terms of method and field definitions (TMethodDefinition or TFieldDefinition, respectively). In
addition, a TAbstractType refers to the abstract node TSignature, which is the common ancestor
of method and field signatures. We split the name, the signature, and the definition of methods
and fields into separate nodes within the program model. As object-oriented refactorings, for
example, are mainly concerned with the high-level program structure, this separation facilitates
reasoning about the feasibility of structural modifications of the program. Consequently, we
support compact and modular definitions of refactoring rules concerning the class-method/field
(de-)composition of Java programs concisely formulated over the corresponding program model.
Methods and fields are represented by a graph structure consisting of three elements:

• The name of the method (field) is contained in the attribute tName of TMethod (TField),
thus being globally visible in program model instances.

• The signatures of methods (fields) of a given name are represented by the type TMethodSig-
nature (TFieldSignature). The signature of a method consists of its name and an ordered
list of parameter types parameters, while the signature of a field consists of its name and
its type. Different signatures with the same name, i.e., a common container TMethod or
TField, facilitate overloading. Signatures play a central role in the OO language semantics
as all method call dispatches and field accesses are resolved over signatures.

• TMethodDefinition (TFieldDefinition) is an abstraction encapsulating the entire method
bodies occurring in the given program. The method body’s implementation details are
covered by a single definition node in the program model, while edges denote additional
relevant (semantic) properties.

1 package edu.ncsu.csc.itrust.action;

2

3 public class EditOfficeVisitAction {

4 public String updateInformation(EditOfficeVisitForm form , boolean

isERIncident) throws FormValidationException {

5 String confirm = "";

6 try {

7 updateOv(form , isERIncident);

8 confirm = "success";

9 return confirm;

10 } catch (ITrustException e) {

11 return e.getMessage ();

12 }

13 }

14 }

Listing 5.2: Excerpt from the Java source code of iTrust class
EditOfficeVisitAction

For example, Figure 5.4 shows a program model excerpt of the program model created from
the iTrust implementation, focusing on the source code excerpts in Listings 5.2 and 5.1. The
excerpt contains two different method signatures for the method name updateInformation. For
the signature with the parameter types EditOfficeVisitForm and Boolean, a definition from
the class EditOfficeVisit is shown, which calls another method definition. This allows the easy
specification of, e.g., compliance checks with models [22] (Chapters 8 and 9), refactorings [143,
129] (Chapter 10), or design flaw detection [20] and elimination [144].
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Figure 5.4: Excerpt from the iTrust program model.

5.2.5 Member Access

One of the essential parts of every high-level programming language is access to data or calls
of functions. These can be in sequential order as in Listing 5.1, but most times, such accesses
are woven into a conditional control flow as in Listing 5.2. Generally, the control flow’s precise
structure is not important in many high-level applications, such as a vast selection of security
checks, but it is sufficient to know which members are accessed. For this reason, in our type
graph, access edges between member instances represent semantic dependencies between mem-
bers. The node TAccess stands for all kinds of semantic dependencies among class members, i.e.,
essentially read, write accesses to fields, and call accesses to methods. For more sophisticated
security analyses, it might be necessary to differentiate between different access kinds explicitly.
Supporting such analyses, the type graph provides four specific kinds of accesses.

TCall: This access should be used for invocations of functionality such as method calls in Java.

TRead: Accesses, where a field’s value is read but not modified, are represented by an instance
of the TRead node.

TWrite: If there is an assignment to a field, then the TWrite node should be used.

TReadWrite: Often it is undecidable whether there is a read or write access to a field. For
example, if a field is passed to the parameter of a method in a Java program, it is statically
undecidable and depends on the method’s concrete implementations. The TreadWrite

node represents such cases.

For example, the TCall node in Figure 5.4 represents the method invocation of the method
updateOv by the method updateInformation in line 7 of Listing 5.2.

5.2.6 Overloading, Overwriting and Hiding

To allow compact reasoning on a program model, e.g., as part of refactoring rule definitions,
overloading, overriding, and hiding dependencies to other members are declared by corresponding
edges between definition instances. However, the overloading/overriding/hiding structure is also
derivable from the signatures, definitions, and inheritance relations.

In the context of overloading, we consider the definitions of methods with the same name
but different parameters within the same type hierarchy. These definitions should reference each
other using the overriding reference. Regarding the method overriding and field hiding, due
to our focus on the Java programming language, we implement the specification of the Java
programming language [60]. Methods have a hard override of methods with the same signature
in parent classes, while fields are only hiding fields with the same name in parent classes.
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5.2.7 Modifiers & Visibilities

A low-level security concept in many programming languages is access restriction to functionality
or data realized in terms of visibilities. Methods, fields, or entire types can be encapsulated from
the outside. Access policies are specified using the visibilities. Following Figure 5.5, in the type
graph, we encode such visibilities as modifiers on types and members. We orient the specification
in the type graph on the UML [4]. By default, the visibility is set to the lowest possible visibility
(TPrivate). Besides, we support the modifier static to indicate elements that can be accessed
outside of the context of an object.

5.2.8 Annotation Mechanism

As introduced at the beginning of this section, the type graph provides an annotation mechanism
that supports defining custom extensions to the metamodel and annotating elements in the pro-
gram model. Figure 5.6 shows this annotation mechanism in more detail. Annotatable elements
are the ones that extend an abstract type TAnnotatable. Furthermore, this annotation mecha-
nism is used to express comments on the source code elements in terms of a TTextAnnotation

on the program model’s corresponding elements.
Finally, annotations that are part of a programming language, such as Java annotations, are

supported. For these cases, annotations in the type graph can have a type (TAnnotationType)
representing the corresponding annotation type of the programming language.

5.3 Tool Support

We specified the program model’s type graph as Ecore metamodel using the Eclipse Modeling
Framework (EMF) [145, 146]. The metamodel and generated Java classes representing the type
graph have been packaged to an Eclipse plugin. Besides the default functionality of the generated
type graph classes for accessing a program model from Java applications, these have been ex-
tended with often used queries. Among others, these queries comprise getting a TClass for a fully
qualified name such as edu.ncsu.csc.itrust.action.EditOfficeVisitAction, or searching
for methods signatures based on their String representations, like updateInformation(EditOf-

ficeVisitForm,boolean):String.
While a direct interaction of developers with program models is not intended, it can be useful

to visualize excerpts of a program model, e.g., to visualize findings of a security analysis or effects
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Figure 5.7: Screenshot of the Eclipse IDE showing GRaViTY’s graphical
program model editor.

of a refactoring. Using the Sirius visualization framework [147], we implemented a basic graphical
editor for the program model. Figure 5.7 shows a screenshot of this editor in the Eclipse IDE.
In the center of the figure, the model excerpt is visualized. In this case, the overriding hierarchy
of the method filter(List):List is shown. This method is invoked when doctors want to
filter medical reports or filter patients according to their demography. For the implementation
of medical report filtering, the outgoing calls of the method definition are shown. At the bottom
of the figure, in the properties view, details on the selected element are shown, e.g., the currently
selected method definition is defined in the class MedicalReportFilter.

5.4 Evaluation of the Program Model

In this section, we evaluate the proposed program model and its type graph regarding two
objectives. First, we evaluate whether the type graph is suitable to specify meaningful analyses.
Second, we focus on the type graph’s expressiveness and if it is applicable to represent real-world
Java programs.

O1 ś Suitability of the Type Graph

The program model’s idea is to provide a representation of object-oriented programs that allows
the specification of analyses without going down to the level of statements. For this reason, the
question is whether the specified program model is suitable for the application in the quality and
security analysis of object-oriented programs.

Until now, the program model has been used for various purposes. In this thesis, we are going
to use the program model for five different purposes.

1. In Section 7.2, we use the program model for establishing a correspondence model between
design-time models and code.

2. In Section 8.4 and Section 8.6, we use the program models for compliance checks between
the design-time models and the implementation.
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3. In Section 10.2, we check the applicability of refactorings on the program model.

4. In Chapter 13, we extend the program model with variability annotations for checking
refactorings on software product lines in Chapter 10.

Beyond this thesis, the program model has been used by Peldszus et al. for the specification
and detection of design anti-patterns [33, 20]. Mebus extended in his master’s thesis the program
model with high-level data flows and used it to detect secure data flow violations [148].

Overall, the program model has proven to be flexible and applicable to represent object-
oriented programs in various analyzes. Also, our extension with variability and the work of
Mebus has shown that the program model can easily be extended to cover additional aspects.

O2 ś Applicability of the Type Graph to Real Java Programs

Besides being suitable to express meaningful analyses, it has to be possible to create program
models for real-world object-oriented programs using the full range of OO features. As we focus
on Java programs in this thesis, regarding this objective, we study whether real-world Java
programs can be represented using the type graph.

As part of this thesis but also in other research, the proposed program model has been used
to represent real-world Java programs. For this thesis, we created the program model for 22 Java
programs from a broad selection of domains. In addition, in two related bachelor’s theses, Wiebe
and Ivanova studied the correlations between OO-design metrics and security aspects. For this
reason, they created the program model for 50 Android applications [149] and 33 famous Java
projects on GitHub [150].

In summary, the proposed type graph has been successfully used to create program models for
105 different Java programs and Android applications. This finding indicates good applicability
to real-world Java programs. This assumption is backed by the fact, that we have corresponding
program model elements to represent all constructs of the Java language in version 1.7.

5.5 Threats to Validity

The type graph has been designed to support arbitrary object-oriented languages but has not
been applied to any other programming language than Java. Nevertheless, the generality of the
program model and the extensibility, e.g., as demonstrated in the work of Mebus, are promising
indicators for the applicability to other object-oriented languages. While the type graph itself
should be expressive enough to represent, e.g., programs written in C++, problems can occur at
the creation of program models at the resolution of constructs like pointers.

The reduction of the details from the statement level limits the applicability for analyses that
require details from the statement level. However, first, the type graph has not been defined
for such analyses and, second, there are plenty of alternatives. For example, MoDisco [140]
or the Java model of the Eclipse Java Development Tools (JDT) [151] for Java programs pro-
vide program models containing resolved inter-method dependencies and all details from the
statement-level of the methods. Second, if required, the type graph can be extended with addi-
tional information.

The type graph has been designed to represent the semantic structure of object-oriented
programs in the presented version, but there are no trace links to source code files. For languages
like Java, the location of a type usually can be calculated from the fully qualified name, e.g.,
multiple source folders can require an expensive search. Even more problematic is this issue if
multiple Java classes are defined in the same compilation unit. However, without modification,
the information about the location of a type on the file system can be encoded using the type
graph’s annotation mechanism. Alternatively, the type graph can be extended by additional
elements for representing the desired information.

5.6 Conclusion on the proposed Program Representation

To conclude, the program model representation described in this section provides a reasonable
trade-off between an appropriate level of abstraction on the one hand and the inclusion of further,
initially implicit yet relevant, semantic program properties on the other hand.



5.6. Conclusion on the proposed Program Representation 63

This kind of representation coincides with an abstraction level, specifically tailored to reason
about object-oriented refactorings and to perform high-level security analyses. This abstraction
level has three significant advantages compared to conventional AST representations:

• It is restricted to those program entities being relevant for defining high-level program
transformation rules and reasoning about their application to program graph instances.

• It is enriched with static semantic information between arbitrary program entities, being
crucial for reasoning about behavior preservation as part of preconditions of graph-based
program refactoring rules.

• The method signature is separated from the method definition to allow for a compact
formalization of core concepts of object-oriented programs (especially those written in
Java), namely inheritance, overloading, and overriding/hiding, within refactoring rules or
security patterns.

In addition, the general and generic nature of graph-based representations allow for arbitrary
application-specific adoptions and enhancements to be added to the type graph. For instance,
if the program model has to incorporate complex inheritance structures or problematic visibility
rules for class members [68], the type graph definition can be easily extended, e.g., by introducing
a further directed accessibility edge between class members. For instance, additional information
about semantic dependencies among class members is useful to check if a program transformation
may obstruct non-obvious and even transitive access dependencies. This information can also be
used for static security analyses when security requirements are given.
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Chapter 6

Model-Synchronization and Tracing

This chapter shares material with the PPPJ’2015 publication łIncremental Co-Evolution of Java
Programs based on Bidirectional Graph Transformationž [129], the TTC’2015 publication łA So-
lution to the Java Refactoring Case Study using eMoŕonž [129], and the EMLS’2020 publication
łModel-driven Development of Evolving Secure Software Systemsž [152].

One of the main challenges in developing and maintaining a secure software system is to
keep track of all artifacts created during the development and their relations with each other.
For example, consider a security certification of the iTrust system. For this certification, on the
one side, we need to know which model elements from the design phase correspond with which
implementation artifacts, e.g., to verify that all planned functionalities have been implemented.
On the other side, we have to ensure that all security assumptions from any development phase
are fulfilled in all other phases. To perform this compliance check, we have to trace security
requirements between the design-time models and the source code. Also, in case of changes
on any artifacts, the corresponding other artifacts must be changed to preserve compliance.
Otherwise, a divergence between the design-time models and source code or divergence among
the design-time models would manifest themselves and could lead to missed security violations
in analysis results. For example, UMLsec security checks do not show any violations, but there
are undetected violations in the implementation due to the divergence. These challenges are the
subject of RQ1 of this thesis and answered in this chapter:

RQ1: How can security requirements be traced among different system representations through-
out a software system’s development process?

In Figure 6.1, the relevant parts for answering the research question are highlighted. First,
there is the synchronization between the UML models, source code, and program model. For this
synchronization, we need a mechanism that gives us guarantees on the correctness of performed
synchronization operations. For this reason, we look at formal methods that can give us such
guarantees within a given specification. Second, we have to look at tracing between the different
UML models considered in GRaViTY. Here, we focus on UML models describing a software
system at different levels of abstraction. Finally, we have to look at how we can continuously
trace concrete security requirements. This is essential to enable security compliance checks
between the design-time models and their implementation. Accordingly, we have to consider
three different tracing kinds leading to three sub-research questions:

RQ1.1: How can we continuously create and maintain traces between design-time models and
the implementation?

RQ1.2: How can trace links between design-time models with different levels of abstraction be
represented and maintained?

RQ1.3: How can trace links be used to propagate design-time security requirements into the
implementation?

We support developers in applying the model-driven development approach, as described in
Section 3.3, to develop and maintain secure software systems. As shown in Figure 6.1, design
models, source code, and a program model for performing sophisticated analyses, e.g., the security
checks we will discuss in Chapter 8, are continuously synchronized to cover the different software
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Figure 6.1: Location of the Tracing in the Overall Concept

development phases. As source code, we consider in this thesis Java source code and UML for
specifying design-time models.

As introduced in Chapter 5, the program model provides a high-level abstraction from the
pure Java source code [129], e.g., reducing details from the statement level to access edges
between the single members. In addition, easy to query structures are created, such as structuring
methods and fields into a tree with names, signatures, and definitions. Section 6.2 shows on this
program model and UML class diagrams the realization of required synchronization.

While the synchronization introduced in Section 6.2 will allow us to trace between detailed
UML class diagrams and their implementation, tracing within UML models of different abstrac-
tion is missing. Section 6.3 discusses the UML inheritance mechanisms regarding their suitability
for tracing within GRaViTY and shows how to trace UMLsec security requirements.

In GRaViTY, security-related specifications are introduced into the different artifacts as
annotations. On UML models, we use the UMLsec profile for security annotations proposed
by Jürjens [5]. For making this information available at run-time, in Section 6.4, we introduce
equivalent Java annotations. Also, we discuss dynamic tracing without enriching the source code
with additional information, e.g., UMLsec security requirements.

However, providing a specification for the required models and the checks is only one chal-
lenge. The second challenge is to create the required models initially and to keep them up to
date. In this chapter, we address this second challenge. First, we introduce our approach to
create a program model or UML models from source code and keep the models and the code
synchronized. Thereby, we generate the required traces for propagating security information.
Afterward, we look at traces between UML models with different levels of abstraction. Last but
not least, we discuss traces between security requirements on different artifacts.

6.1 Background on Tracing

This chapter mainly deals with tracing among different artifacts of a software system. For
realizing the proposed GRaViTY approach, we have to come up with a suitable tracing approach
that also allows synchronization in case of changes. For this reason, this section discusses the
background on traceability, the general aim of traceability, and how to realize traceability. There
are several definitions for tracing and traceability.

The ISO/IEC/IEEE standard 24765 [153], giving a vocabulary for systems and software
engineering, contains three traceability definitions. The one that fits our needs best defines
tracing as tracking relationships between multiple products of the development process [153].
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For example, in the domain model of the iTrust system, we defined that there are patients in
this domain. Tracing means here to find all elements related to this element, e.g., locations in
the source code representing a patient and making these relations explicit.

Similarly, Spanoudakis and Zisman define software traceability as the ability to relate artifacts
created during developing a software system with each other [154]. Thereby, the artifacts describe
a software system from different perspectives and levels of abstraction. However, following their
definition of software traceability, not only relating the different software artifacts is considered
but also the stakeholders that have contributed to the creation of the artifacts and the rationale
that explains the form of the artifacts.

In summary, possibilities to establish trace links range from simple references of complete doc-
uments to individual, identifiable, typed, and possibly attributed connections between particular
elements within individual development artifacts [155, 156]. We aim at explicitly specified and
typed trace links conforming to a traceability model defining the possible traces and traceable
objects. When looking at how artifacts can be related among each other, five general types of
traces can be identified [154, 157]:

Dependency: This trace kind comprises arbitrary relations between entities required for solving
a problem. As all of such relations considered by us are explicitly contained within the
artifacts, we do not have to trace these explicitly. However, our approach has to keep these
relations consistent across all development artifacts.

Satisfaction: This comprises elements that satisfy other elements, e.g., the elements that satisfy
a requirement. As there are usually multiple elements across all development artifacts that
satisfy a requirement together, this trace type also includes the realization of an abstract
element by a more detailed element. Going back to our motivation, this kind of trace is
the most relevant for our approach.

Rationalization: As already motivated by Spanoudakis and Zisman [154], traceability also
comprises the rationale for an artifact’s existence. However, this kind of tracing is out of
scope for this thesis.

Verification & Validation: This category comprises relations between parts of the software
system, properties, and their verification, e.g., as part of test cases. In our case, these
would be security checks used for the verification of security requirements.

Evolution: In this category, evolution steps are recorded for later inspection. In this thesis, we
do not consider this type of trace link. However, we could record the changes propagated
by the synchronization introduced in this chapter or applied refactoring operations.

To conclude, for our purpose, we have to develop an approach that can make satisfaction
trace links explicit and maintain these in case of changes.

6.2 Inter-Artifact Tracing and Model-Synchronization

The proposed GRaViTY approach requires a continuous synchronization between UML models,
the source code of the implementation, and a program model for performing analyses. Model
changes, e.g., caused by a single restructuring operation of the software system’s architecture,
may substantially be very complex, involving various, arbitrarily fine-grained source code changes
and harden the study of effects, e.g., as for security properties in RQ4: “How do changes within
a software system affect its security compliance, and how can these effects be handled? ”. Besides,
the opposite direction may also hold: a developer’s edit on a source code file, although only
affecting a small part of the source code, may in some cases yield arbitrary complex program
model modifications, e.g., due to subtle semantic changes caused by the edit.

A comprehensive technique is required for the postprocessing of changes to handle both cases.
This technique has to automatically restore the other side’s consistency for any possible modifi-
cation applied to either side, whereas unaffected parts remain unchanged. Such an incremental
consistency-preserving mechanism, which operates on the modeling language’s level instead of
the models itself, defines an exogenous bidirectional transformation [36]. In this context, bidirec-
tionality means that, given two metamodels or grammars (referred to as the source and target
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Figure 6.2: Concept for tracing using triple graph grammars.

languages), the underlying mechanism automatically synchronizes instances of the source meta-
model with instances of the target metamodel and vice versa. Thereby, each transformation on
the one side having an inverse transformation on the other side.

For the tracing and synchronization between the source code and program model, indicated
by the lower right synchronize arrow in Figure 6.2, these two grammars or modeling languages are

1. the Java grammar on the source code side, used to parse the source code and extract an
AST from the parsed source code files, and

2. the graph language defined by our type graph on the program model side.

Altogether, in GRaViTY, we consider three kinds of artifacts, representing the software
system under development or maintenance, that have different metamodels specifying the lan-
guage’s syntax. This metamodel is the UML Superstructure Specification released by the Object
Management Group [4] for the UML models. For the program model, we use the type graph
introduced in Chapter 5. As source code, we consider Java source code that complies with the
Java language specification [60].

For the so-called forward and backward transformations of such a bidirectional transformation
mechanism to be incremental, we require them to leave unmodified program parts unaffected
by the transformation. This property of the bidirectional transformations ensures that, e.g.,
meta-information such as the formatting of source code is preserved. In addition, incremental
approaches enable high performance of model synchronization even for larger software systems,
as the execution time is proportional to the extent of the modification rather than the size of
the software system’s representations to be synchronized.

We employ Triple Graph Grammars (TGG) [158] for a bidirectional synchronization between
the source code, the program model representation of Java programs, and UML models to keep
the different artifacts consistent. In Figure 6.2, the TGGs are denoted by bold circles that
connect the artifacts translated by the TGG. In what follows, we first give a brief introduction
to bidirectional graph transformations and introduce our approach for synchronization based on
bidirectional graph transformation afterward.

6.2.1 Background on Bidirectional Graph Transformations

In a graph-based program transformation setting, the bidirectionality and incrementally prop-
erties required by us are guaranteed by a corresponding formalism for specifying bidirectional
graph transformation rules. In particular, Triple Graph Grammars (TGG) [158] constitute an
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Correspondence Model Program ModelMoDisco Model

mN:MMethodName tN:TMethodName

:MModel :TypeGraph

++

++++

++++

eq(mN.name, tN.tName)

mMethodNames methods

Figure 6.3: TGG transformation rule for method names from the MoDisco
Java model ⇄ program model transformation.

approach meeting those requirements. TGG constitutes a rule-based, declarative language for
specifying bidirectional transformation rules. To this end, the TGG formalism provides a concise
way to specify and maintain correspondences between instance elements of different metamod-
els. This is achieved by constructing a third graph (hence the name Triple Graph Grammars),
a so-called correspondence graph, which establishes links between corresponding elements in the
source and target models. Since these links express relations between corresponding elements
from different artifacts, we can use the correspondence graph as a knowledge source containing
all satisfaction trace links. Thereby, the transformation rules specify the satisfaction relations.

By convention, transformation rule-applications for synchronizing a target graph with a source
graph are called forward transformations, whereas the rule-applications in the other direction are
called backward transformations. Each pair of such complementing exogenous transformation
rules are automatically derived from one declarative rule specification connecting both metamod-
els. TGG describes correspondences between source and target instances conforming to the given
metamodels as usual. Thereupon, correspondences between elements from both metamodels are
specified through the mediating correspondence graph.

Thus, a TGG specification consists of a set of declarative triple graph rules that simultane-
ously create the source, target, and correspondence graphs. These rules are operationalized each
to a forward and a backward translation rule. In particular, a forward translation rule does not
create the source graph but matches the elements of a given source graph and extends them to
a triple by creating the correspondence and target element as specified in the rules.

6.2.2 Model-Synchronization with Triple Graph Grammars

In what follows, we introduce how we applied TGGs to synchronize the different software devel-
opment artifacts considered in the GRaViTY approach. We specified TGG rules for two of the
three synchronize arrows in Figure 6.2. We emulate the third synchronization by a subsequent
execution of the other two. To be more precise, we defined TGG rules for translating between
Java source code and UML models and between Java source code and the program model.

For instance, the TGG rules in Figure 6.3, Figure 6.4, and Figure 6.5a show an excerpt of the
TGG rules of specifying the transformation between Java source code and the program model.
These rules translate method name elements, method signatures, and method definitions, respec-
tively, by creating the corresponding target elements and the correspondence graph elements to
obtain a mapping between the source and the target model (a backward translation is executed
analogously). In what follows, we describe the rules and their interaction in detail.

A TGG specification allows for propagating changes between source code and its program
model representation or a UML model. In the following, we use the term synchronization for an
automated mechanism for incrementally ensuring consistency between both views after arbitrary
modifications on either side. As TGG rules are not directly applicable to textual inputs, to
obtain an automated synchronization procedure, as well the Java source side has to be given
in a graph-based format. For constructing a corresponding graph-based, yet much more AST-
like intermediate representation of Java programs, several existing frameworks are available, cf.,
e.g., [139, 141]. Here, we consider the MoDisco metamodel and the corresponding transforma-
tion engine, for which parsing and serialization between Java source code and the graph-based
MoDisco model have been already implemented [139, 159].
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Correspondence Model Program ModelMoDisco Model

:MMethodSignature :TMethodSignature

:MMethodName :TMethodName

++

++++

++++

AbstractTypeDeclaration :TAbstractType

++++

bodyDeclarations defines

returnType returnType

Figure 6.4: TGG transformation rule for method signatures from the MoDisco
Java model ⇄ program model tramsformation.

(a) MoDisco Java Model ⇄ Program model transformation.

(b) MoDisco Java Model ⇄ UML class diagram transformation.

Figure 6.5: Transformation rules for method definitions of the program model
(A) and UML (B) TGGs.
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The transformation rules of the two TGGs implemented in GRaViTY use the same MoDisco
metamodel for java source code and are structurally and syntactically very similar. Figure 6.5
shows two rules for translating Java methods. First, in Figure 6.5a, for translating methods into
method definitions in the program model, and second, in Figure 6.5b, for translating these into
operations in the UML models. While the source pattern matched in the MoDisco model is the
same for the two rules, the target side pattern is very similar. This similarity also applies to
most rules of these two TGGs. For this reason, in what follows, we only focus on the TGG rules
of the Java source code to program model transformation. Thereby, we assume that our TGG
rule’s left-hand side refers to the MoDisco metamodel, and the right-hand side is defined by our
type graph as described in Chapter 5.

Figure 6.3 shows a sample TGG rule consisting of a triple of graph rules. By convention, the
source model part is depicted on the left, the target model part on the right, and the correspon-
dence graph, with nodes being denoted by circles, in between. The circle-shaped correspondence
graph reflects the mapping strategy between the two domains and is of high importance for trans-
lation purposes as it provides explicit traceability links between the models. The correspondences
facilitate the iterative mapping of elements in two hierarchies, i.e., a correspondence created in
a rule can be required as a context in another rule for further handling of child elements in the
hierarchy. Black rectangles represent graph elements in the application context, i.e., elements
that have to be present in the source graph to make the rule applicable, and green graph elements
refer to those elements being created by the rule application. The parallelogram at the bottom
of Figure 6.3 containing an expression represents a constraint. This constraint ensures that the
name attributes of the referred elements on the left-hand side and the right-hand side have the
same value. Intuitively, this rule’s meaning is the following: for each yet unprocessed method
name in the Java source code, a new method name node is created in the target program model.

Besides this basic rule in Figure 6.3, a complete TGG specification for synchronizing two
graph-based model representations usually involves more complex triples to handle any possi-
ble case appropriately. For instance, as each element is translated only once during a TGG
transformation, the given rule is not sufficient for synchronizing both sides as a single method
instance in the program is represented by multiple elements in the program model (name, sig-
nature, definition). To illustrate that the expressive power of TGG specifications goes beyond
simple one-to-one correspondences, we provide an example of two (interrelated) TGG rules for
translating method definitions, shown in Figures 6.4 and 6.5a.

Rule MethodSignatureRule (Figure 6.4) defines the synchronization of method signatures.
In a certain sense, this rule constitutes a successor rule of MethodNameRule (Figure 6.3) as it
refers to elements created by MethodNameRule as matching context. Please note that the trans-
lation of parameter lists from Java Source/MoDisco into a method signature and a corresponding
parameter list representation in the program graph is specified in further rules. Nevertheless, this
example shows a case where one element on the source side corresponds to multiple elements on
the target side within a single TGG rule, thus ensuring correct correspondences while synchro-
nizing both sides. This rule can be interpreted as: for each yet unprocessed method signature
with an already processed name and type in the Java source code, an additional method name
signature node is created in the target program model. This new element is connected with
the respective signature node and type corresponding with the already processed ones from the
source side of the rule.

The rule MethodDefinitionRule (Figure 6.5a) again constitutes a successor rule of Method-
SignatureRule (Figure 6.4). Whenever MethodDefinitionRule is applied, a new method defi-
nition is added to the program model for the corresponding method definition within the source,
i.e., the respective MoDisco representation. This newly created method definition node is con-
nected to the signature, previously created by MethodSignatureRule by inserting a new link
within the correspondence graph. In additional rules, the relations to the classes defining the
methods are created. All elements in the method definitions in the MoDisco model not trans-
lated by any TGG rule result in abstraction from the detailed model as there is no corresponding
counterpart in the program model.

These three sample rules illustrate that in realistic application scenarios where both sides
differ concerning the level of detail and/or the way information is represented, complete TGG
specifications usually comprise more complex connections than just simple one-to-one corre-
spondences. Consequently, on the one hand, it is challenging to develop TGG specifications
that guarantee bidirectional model transformations, ensuring consistency preservation for any



72 Chapter 6. Model-Synchronization and Tracing

well-typed input models on both sides. On the other hand, once implemented, TGG rules are
an expressive and powerful instrument for bidirectional model transformation scenarios, where
incremental synchronization comes for free with the rules.

The (forward) transformation from Java program into the program model is applied if, for
instance, a Java developer edits the source code, e.g., adding a new class. After such a source
code modification is completed, the program model has to be updated, respectively, to incorpo-
rate a new node of type TClass representing the new class. This update is achieved by applying
a corresponding TGG rule for translating class definitions (similar to the one shown for method
definitions in Figure 6.5a) to insert a node for the new TClass into the program model. Addi-
tional rule applications might be necessary to capture all changes made by the developer.

In contrast, whenever the program model is modified, e.g., by applying a Pull-Up Method
refactoring on the program model, the changes within the modified program model are incremen-
tally propagated back into the Java source code. In a Pull-Up Method refactoring, semantically
equivalent method definitions within child classes are pulled into their shared parent class, re-
ducing duplicated code. Among others, this refactoring is discussed in detail in Chapter 10. For
propagating the changes, the (backward) transformation, resulting from the same TGG specifi-
cation, is applied. First, the differences between the original program model and the modified
program model are calculated. For the Pull-Up Method refactoring, these differences comprise
the deletion of all definitions realizing the method signature to be pulled up to the parent except
one and redirect the remaining one’s class edge. TGG synchronization is based on the previous
execution of the forward transformation, and it consists of the following steps:

1. Withdrawing those rules that do not match anymore, i.e., rules that created elements
that have been deleted through the modification. In our example, the Pull-Up Method
refactoring results in one or more deleted method definitions, which have been created
earlier by applying the MethodDefinitionRule in Figure 6.5a. Each additional element
created by this rule application, i.e., the corresponding method on the MoDisco model
side and the link to the method signature in the program model, has to be deleted while
reverting this rule application. This procedure always yields a consistent state, as, after this
synchronization step, no more necessary elements are removed, or unnecessary elements are
preserved on either side.

2. Matching and translating those elements which have been added by the modification. In
our example, another TGG rule (not depicted here) has to be defined to take care of the
newly created membership edge between the method signature and its parent class by
creating the corresponding membership edge on the MoDisco side. Thus, based on the
intermediate MoDisco representation, we always arrive in a state of the source code that
is the modified program model.

The shown TGG rules are appropriate in handling different granularity by not translating
elements, e.g., all details from the method bodies available in the MoDisco model but not in
the program model. Unfortunately, as illustrated in what follows, our experience at defining the
TGG rules has shown that they cannot create structures that differ entirely on the two sides.
Our solution for this issue comprises implementing multiple preprocessing steps extending the
different models with such structural information.

One example of such an issue solved by preprocessing is the method representation as name,
signature, and definition. Figure 6.6 illustrates this problem. In principle, it is possible to create
this structure using TGG rules by creating the whole structure when a method name is translated
the first time and inserting afterward. However, this way of creating this structure produces
issues in synchronizing changes on the structure. Let us assume that the TMethodName node in
Figure 6.6 has been created when the method defined by the class EditOfficeVisitAction has
been translated using a TGG rule TGG rule 1. The other signature has been added afterward
by TGG rule 2, reusing the TMethodName node created by the application of TGG rule 1. A
refactoring, e.g., a Pull-Up Method refactoring [143], deletes the TMethodDefinition defined by
EditOfficeVisitAction and synchronizes this change with the source code. For synchronizing
this change, the TGG algorithm has to undo all rule-applications that initially lead to the creation
of nodes or edges deleted by the refactoring. In this case, this is the application of the rule TGG

rule 1. As the TMethodName node’s creation took place in the same rule-application as the
creation of the deleted TMethodDefintion node, after undoing the rule-application, it seems
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Figure 6.6: Illustration of the problem in creating method trees using TGGs.

that the TMethodName node has never been created. Consequently, this undo also makes the
creation of the other TMethodSignature node by TGG rule 2 invalid as its context does not
exist anymore, leading to a situation in which no recovery without deleting and recreating the
TMethodDefiniton node translated by the TGG rule 2 is possible. This pair of deletion and
recreation is also reflected on the implementation side leading to a loss of all information from
the statement level. To deal with this issue, we defined a preprocessing that already creates the
required structure on the MoDisco model’s side.

To conclude, TGGs provide an automated mechanism to preserve consistency between the
two different program representations for managing co-evolving Java programs. As a result, we
obtain a graph-based framework for arbitrarily interleaving program evolution and maintenance
steps. We can also use this approach to translate and synchronize model elements’ security
requirements between different system representations, e.g., design-time models and source code.

6.2.3 Tool Support for the Model Synchronization

Our implementation of the synchronization between source code and the program model as well
as UML models is based on the eMoflon graph transformation engine [160]. Among others,
eMoflon allows the specification and execution of TGGs between models specified using the
Eclipse Modeling Framework (EMF). While the UML models and the program model are specified
using EMF, we have to parse the Java source code to create an EMF model. For this purpose,
we are currently using MoDisco [139].

TGG rules are specified in eMoflon using a textual editor. Besides, support by a graphical
visualization similar to the graphics of TGG rules is generated. Figure 6.7 shows a screenshot of
the eMoflon rule editor in the Eclipse IDE. On the left, the classical package explorer is shown,
giving an overview of the rule files. Right of the package explorer, the rule editor is shown.
In the screenshot, an abstract parent of the rule from Figure 6.4 for the translation of method
signatures is shown. The eMoflon tool supports inheritance between rules for minimizing the
duplication of elements in rules. Comparable to abstract classes in Java, shared rule parts that
are not executable on their own can be defined in abstract rules. In this case, signatures of
methods and constructors are translating similar rules that only differ in the type of the node to
create (MMethodSignature and MConstructorSignature in the MoDisco model). On the right
of the figure, the visualization of the TGG rule is shown. Using this tooling, we developed the
two TGGs discussed in this work. For synchronizing the program model with Java source code,
we defined 109 TGG rules. Of these rules, 18 are abstract rules and 90 are concrete rules. The
TGG for synchronizing Java source code with UML models is based on a TGG of Leblebici et
al. [161] and has been extended with deployments of classes and various bug fixes. This UML
TGG comprises 105 TGG rules, of which 88 are concrete rules and 17 are abstract rules.

The structure of the implementation is shown in the component diagram in Figure 6.8. Ele-
ments colored in white are elements that have been developed as part of this thesis, while gray
elements are external dependencies. The two sets of TGG rules are located in the components PM
TGG and UML TGG, respectively. The components MoDisco, UML, and TypeGraph contain the corre-
sponding metamodels. These metamodels and related functionality, e.g., parsing and serializing
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Figure 6.7: Screenshot of the eMoŕon TGG editor in the Eclipse IDE showing
the TGG rule for translating method signatures.

Figure 6.8: Component diagram of GRaViTY’s artifact synchronization.
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of MoDisco, are exported through interfaces. For the MoDisco metamodel, we specified a wrap-
per that extends the MoDisco metamodel with additional elements such as the discussed nodes
for method signatures and names and provides the extensions through an interface. The TGG
components use the interfaces to export the extended MoDisco metamodel and the metamodel of
their target language to realize the transformation. For the discussed preprocessing, six different
interfaces are specified. We have two interfaces for every metamodel at which preprocessors that
are executed before a transformation and postprocessors that are executed after a transforma-
tion can be registered. For example, the creation of the method-signature-name structure is
registered at the interface IPreprocessMoDisco. Technically, these interfaces for preprocessors
and postprocessors are realized as Eclipse extension points1. We provide a Java API for both
transformations and implemented UI entries in the Eclipse IDE to create and synchronize UML
models and program models for Java projects.

6.2.4 Evaluation of the Model Synchronization

In this section, we present the evaluation results of applying the implementation of our model-
synchronization technique on a corpus of 20 real-world Java programs from various application
domains (cf. the first column in Table 6.1) to consider the following objectives.

O1śScalability: Is the proposed model-synchronization technique applicable to real-size Java
programs in a reasonable amount of time?

O2śEfficiency: To what extent does incremental model-synchronization improve the efficiency
of the model creation from source code in case of changes?

We present and discuss the results of our experiments concerning our objectives. All exper-
iments have been performed on a Ubuntu 20.10 LTS mobile computer with an Intel i5-6200U
dual-core processor, 8 GB DDR3 RAM and OpenJDK v1.14.0.

O1śScalability of the Program Model Creation

First, we study whether the synchronization approach can be applied to real-world Java projects
of different sizes in a reasonable amount of time.

Setup. We now describe the details on the experimental setup and methodology to obtain the
results for answering O1.

Our selection of subject systems relies on former experiments performed for related ap-
proaches [162, 163, 164], as well as on a standard catalog for analyzing the evolution of Java
systems [165], to address the objective. We selected open-source Java programs from different
application domains, including software systems for software developers as well as for end-users.
We also aimed at including a range of different program sizes. The particular program versions
considered for the experiments, together with the URL for accessing source code, are included
on our accompanying GitHub site2. We applied our proposed detection technique to all subject
systems, monitoring the execution and measuring execution times.

Results. Table 6.1 lists the Java programs used as subject systems along with statistics re-
garding their size. These statistics contain the logical lines of code (LLOC) of the program’s
source code as well as the number of types, methods, and fields. As types, we consider classes,
interfaces, and enumerations. In the next column, the execution times of the model creation are
given in seconds for the program model (PM) and UML TGG. Here, we show the median values
out of 5 runs. Figure 6.9 shows the detailed run times for the transformations. The overall height
of each bar is equal to the corresponding run time in Table 6.1. For every project, the amount
spent for discovery using MoDisco, applying all preproccessings, transformation using the TGG,
and applying all postprocessings is shown.

For all considered projects, the most time is spent executing the TGGs. However, also a
significant amount of time is spent discovering the source code using MoDisco and for prepro-
cessing. Here, we can observe a significant difference between the impact of the preprocessing

1Eclipse FAQ: https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
2GRaViTY’s GitHub site: https://github.com/GRaViTY-Tool

https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
https://github.com/GRaViTY-Tool
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Figure 6.9: Run times for the program model and UML TGGs.
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Table 6.1: Program statistics and execution times of the program model and
UML model creation.

Project Statistics Duration in s
Name Version LLOC types methods fields PM UML

JavaSolitaire 1.3 1,197 27 115 109 12.88 11.17
QuickUML [166, 167] 2001 2,667 22 175 156 4.80 3.38
JSciCalc [168] 2.1.0 5,437 131 563 200 9.03 7.47
JUnit [169] 3.8.2 5,780 188 841 161 8.12 6.05
JSSE – OpenJDK 8 20,896 236 1,875 861 31.30 23.22
Gantt [170] 1.10.2 21,228 397 3,925 1,323 22.99 16.95
Nutch [171] 0.9 21,473 331 1,750 1,083 21.33 16.79
Lucene [172] 1.4.3 25,472 333 2,096 1,166 17.88 12.98
log4j [173] 1.2.17 30,662 459 3,190 1,226 24.73 18.83
JHotDraw [174] 7.6 32,434 480 3,781 900 40.16 34.47
PMD [175] 3.9 43,063 620 4,064 1,582 30.72 32.17
jEdit [176] 4.0 49,829 606 3,429 1,976 45.28 25.29
JTransforms [177] 3.1 71,348 610 1,509 396 39.99 23.65
iTrust 21 77,501 964 6,166 3,074 85.73 38.68
JabRef 2.7 77,813 1,371 5,702 3,669 68.33 49.96
Xerces [178] 2.7.0 102,279 865 8,267 4,676 76.75 47.76
ArgoUML 0.19.8 135,542 1,596 12,401 3,458 151.40 78.45
jfreechart 1.0.19 144,338 1,093 11,861 3,258 128.43 70.74
Tomcat 6.0.45 177,013 1,732 16,661 7,991 185.70 87.52
Azureus [179] 2.3.0.6 201,541 3,432 17,564 7,106 237.91 100.47

required for the program model and the UML transformation. The postprocessing has only a
minor influence on the recorded execution times. In summary, the TGG for UML models is
faster than the program model TGG.

To study the effect of different properties of OO programs, we related the measured run
time for creating a program model and extracting a UML class diagram to characteristics of
the Java programs. Thereby, we considered the overall time as shown in Table 6.1. The first
plot in Figure 6.10 depicts the relation between time for model creation and logical lines of code
of the program, the second plot with the number of types in the program, and the third plot
concerning the number of members as the sum of methods and fields from Table 6.1. It seems
like the time needed for creating a program model correlates the strongest with the lines of code
of the projects. While there is still a correlation with structural aspects of the projects, the data
points in these diagrams are more varying. As this variation is more significant for the creation
of the program model than for the UML models, this could be an indication of an impact of the
details contained at the statement level of the programs. For the program model, we represent
these details more fine-grained than in the UML class diagrams. Also, the higher slope for the
program model is an indicator of this assumption.

To answer O1, the results show that the time required for initial model creation is rea-
sonable also for larger-scale programs. As our implementation supports incremental model-
synchronization, initialization costs might be omitted later on in the case of evolving programs.
The run-time benefit of the incremental model-synchronization is the subject of objective O2,
discussed in what follows.

O2śEfficiency of the Program Model Synchronization

In this part of the evaluation, we study if we can achieve a speedup by synchronizing changes
instead of restoring the model from scratch.

Setup. To answer O2, we selected a set of fine-grained program edits which frequently occur
during continuous software evolution. In this regard, evolution steps do not comprise complicated
structural program changes in the large, but rather consist in introducing or deleting particular
methods and/or fields, as well as renaming operations, as can be observed in the evolutionary



78 Chapter 6. Model-Synchronization and Tracing

0 50000 100000 150000 200000

0

50

100

150

200

250

pm

uml

logical lines of code (LLOC)

ti
m

e
 i
n

 s
e

c
o

n
d

s

0 500 1000 1500 2000 2500 3000 3500 4000

0

50

100

150

200

250

pm

uml

number of types

ti
m

e
 i
n

 s
e

c
o

n
d

s

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

50

100

150

200

250

pm

uml

number of members

ti
m

e
 i
n

 s
e

c
o

n
d

s

Figure 6.10: Relation between the time required for program model creation
and different project metrics.
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history of the Qualitas Corpus, a standard catalog for analyzing object-oriented system evo-
lution [165]. For our measurements, we initialize for every project a program model from an
unchanged program state. Afterward, we perform a program edit and measure the duration of
the program model update as well as the time for the creation of a new program model.

The speedup sevolution is presumably obtained through incremental model-synchronization
and is calculated according to the formula sevolution = 1 − (𝑡∆/𝑡0), where 𝑡0 represents the
complete initialization time of the unchanged program state and 𝑡∆ denotes the time needed
to update the program model after program edits. As edits are limited to very few program
elements, we assume that re-creation without incremental model-synchronization requires the
same time as for the unchanged program state, i.e., 𝑡0.

For experimental purposes, we simulate the following implementation-level program edits:

• Delete Method : deletion of a random method and all invocations of this method,

• Create Class: inserting a fresh class into a new subpackage of the existing package hierarchy,

• Create Method : inserting a fresh method into a random class, that returns the value ob-
tained from a call of the toString method of this class,

• Rename Class: renaming a random class.

Regarding the propagation of the changes from the model level to the implementation, usually,
manual effort is included for resolving conflicts. However, this manual effort can be reduced by
using our approach for propagating changes. For this reason, we measured the time needed for an
initial propagation of changes into the source code but not the time needed for manual changes
afterward. On UML models, we specified small changes oriented on typical security maintenance
tasks concerning the UMLsec Secure Dependency security requirements. In this experiment, we
considered the following changes in the iTrust UML model:

• Deletion of a security-violating dependency.

• Adding a new property to a class for separating sensitive from public information.

• Extraction of security-critical operations into a new class.

• Moving an operation to a different class to group security-critical functionality.

Results. Concerning O2, Figure 6.11 shows the measured time for synchronization (𝑡∆) as a
bar-chart for the four basic program edits per project. In the figure, we show the median value
out of five runs per change. In general, the time required for synchronization increases with the
size of the project and is in all cases much lower than the time required for initial translation.
As the deletion of a method impacts more elements than the other changes, we observed higher
execution times for this change.

Furthermore, while the measured times for changes only adding elements or not changing
the structure of the already translated elements were very similar within a project, we observed
huge differences for the deletion of methods. Here, the required time does not only depend on
the size of the project but also the coupling of the deleted method has a significant impact. This
coupling cannot only change between different projects but also within a single project.

Of the considered changes, the deletion of methods leads to a lower, but still remarkable
speedup, than we observe for the other three kinds of changes. This difference is because the
ratio of the edited program part to the whole is higher in this case. The achieved median speedup
sevolution for the considered changes is as follows.

• Delete Method : 88.28%,

• Create Class: 98.1%,

• Create Method : 98.19%,

• Rename Class: 97.98%.

When looking into the single applied changes within a project, we noticed, that there is only a
relatively small difference between the times needed for synchronizing the changes except for the
deletion of methods. This can be explained by the fact that the number of the affected elements
can vary for this change. As the deleted methods can have different amounts of dependencies
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Figure 6.11: Time required for incremental model updates for program edits.

with other members the amount of affected elements varies. For the other changes, the number
of affected elements is always the same.

Next, we look at the differences between different projects. As the coupling of methods is
different from project to project, we observed the highest variance in speedup across the different
projects for deleting methods (0.014). The variance of the speedup for all other changes has been
between 5.15E-5 and 9.61E-5. Anyways, for all considered changes there is a low variance across
the different projects.

In general, the achieved speedup factor for synchronizing source code changes into the pro-
gram model is highly encouraging.

The propagation of a change from the UML models into the implementation took 50 seconds
on average and 51.7 seconds in the worst case giving a speedup of 39.7% in the worst case.
Currently, we use a non-incremental code-generator that takes most of the time (98.5%). For
the pure propagation of the changes from the UML models into an implementation model, from
which code is generated, only 0.75 seconds are needed. Thereby, we did not notice any significant
difference between the changes applied to the UML models.

6.2.5 Threats to Validity

A general threat to internal validity may arise from the selection of subject systems not being
representative; to address this issue, we thoroughly investigated related literature for our selection
to cover a broad spectrum regarding both size and application domains. In addition, most of the
programs have been considered for evaluation purposes by comparable approaches.

Another general issue for our approach is the NP-completeness of graph isomorphism used
by pattern matching. However, in our case, we achieve polynomial complexity by restricting
pattern matching using fixed entry points.

Concerning O2, we focus on a small set of self-defined program edits. Although our in-
vestigations show that typical evolution steps, not aiming at bug elimination but on structural
improvement or program extensions, mainly comprise those kinds of edits, they are naturally
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limited in scope and are specific to the particular program. However, those edits constitute the
most general building blocks of frequent evolution steps and, therefore, our experiments can be
assumed to properly simulate evolution-related phenomena occurring in real-life evolving soft-
ware systems. Nevertheless, as part of future work, we plan to further investigate continuous
design-flaw detection scenarios by emulating entire version histories available in repositories of
open source projects, e.g., at GitHub.

6.2.6 Conclusion on the Inter Artifact Model-Synchronization

While TGGs provide and mature mechanism for the translation between models and the synchro-
nization of changes, they do not come without challenges. First, there is the discussed limitation
regarding different granularity and structures between the source and target models. While this
could be easily solved using preprocessings, it is desirable to enhance the TGG algorithm in a way
we do not have to care about such issues. Nevertheless, we consider the proposed TGG approach
as a powerful solution for the synchronization between the UML model, program model, and
source code. Besides the pure synchronization of the different considered models, TGGs also al-
low generating source code structures from UML models and can be used for reverse-engineering
UML models from legacy software systems. However, the supported UML class diagrams are on
the same level of abstraction as the implementation and do not represent UML models as soft-
ware architects would define. Nevertheless, when suitable views are created, these models allow
to effectively use them, e.g., for annotating classes with UMLsec security requirements. Also,
combined with tracing as introduced in the next section, these UML models allow propagating
security requirements from more abstract UML models into the implementation and to detect
inconsistencies after changes.

6.3 Tracing within UML Models of Different Abstraction

In model-driven development (MDD), as introduced in Section 3.3, a software system is devel-
oped by iteratively refining models until models close enough to contain all details necessary
to implement the software system in executable source code are reached. In this thesis, we use
UML models with the three different levels of abstraction that are common for software system
development [76], as introduced in Section 3.3. To be more precise, we consider domain, system,
and implementation models. Nevertheless, the user of our approach is not limited to use exactly
this amount of levels but should have the freedom to choose to work with more or fewer levels.
Also, we assume these models to be specified using the Unified Modeling Language (UML) [4].

These models are handed over to developers, that implement the concrete software system. To
ease this task, from these models initial source code stubs might be generated that are manually
extended with the specifications from the models that could not be generated automatically.
Considering all models that have been created at MDD, there is a significant difference in detail
between the very early UML models and those that are handed over to developers, are used for
code generation, or are synchronized with the implementation using the mechanism presented
in the previous section. While we presented a solution for tracing between the source code and
fine-grained UML class diagrams, to allow the tracing among the different UML models, we need
trace links comparable to the correspondence model of the TGGs for the inter-artifact tracing,
introduced in Section 6.2. In what follows, we show how we can realize such traces by only
making use of UML elements already specified in the UML Superstructure.

6.3.1 Background on Refinements in UML Models

The proposed workflow of iteratively refining models allows the systematic reuse of elements but
also requires continuous tracing between the individual models. In this section, we first discuss
the relationship types defined in the UML Superstructure [4] that could be used for defining
the refinements considered by us. Afterward, as refinements can be used to establish some kind
of inheritance hierarchy, we discuss polymorphism in the context of the UML as well as an
implication for UMLsec.
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Figure 6.12: Excerpt from the UML Superstructure showing the specification
of refinement relations.

6.3.2 Refinement Relationship Types

The UML specifies various relationship types to define refinements [4]. Figure 6.12 shows an
excerpt of the UML metamodel focusing on the refinement relations. On the left of the figure,
the type hierarchy of the relationship types is shown and on the right the elements these can
relate. In what follows, we discuss the semantic meaning of the non-abstract relationship types.

Dependency: This relationship kind represents one of the most abstract relations between
elements. One or more elements require other elements for their realization. There are
more specific instances of this relationship that concretize the kind of this requires relation.

Abstraction: Using this relationship, multiple elements that represent the same concept on
different levels of abstraction or from different viewpoints can be connected.

Realization: This is a specific abstraction dependency that specified that concrete elements
implement a more abstract element. Following the UML Superstructure, this relation
should be used for the specification of refinement relations only considered for tracing.

InterfaceRealization: This is an even more specific kind of realization specifying that a classi-
fier implements a concrete interface and offers its functionality over the contract specified
by the interface.

Generalization: Using this relationship, we specify that one or more concrete classifiers are an
instance of one or more general classifiers. This implies that the concrete classifiers can be
used in the context of the generals. Also, the concrete classifiers inherit all features from
the generals.

6.3.3 Polymorphism in UML

Comparable to object-oriented languages, inheritance within UML models leads to polymor-
phism. In UML, the inheritance between objects is expressed using generalizations as introduced
in the previous section about refinement relations. While many programming languages, e.g.,
the Java programming language, allow multiple inheritance only for interfaces, the UML allows
multiple inheritance in all cases.

Following OO languages, the UML specifies rules for overriding members between classes [4,
180]. In comparison to most OO-programming languages, there is a huge difference in the
overriding mechanism. The UML specifies covariant overriding of features. This means, that
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Figure 6.13: Model refinements between the UML domain model (Figure 3.2)
and design model (Figure 3.3) of iTrust

a method or property can be overridden by a member with a narrower signature. In Java, for
example, it is possible to specify a more concrete return type of a method in a subclass [60]. In
the UML, this is not only possible for return parameters of operations but all parameters.

6.3.4 UMLsec Secure Dependency in the Context of Inheritance

The interface of a class considered in UMLsec comprises all features of the class itself as well
as all features of generalized classes that have not been overridden. For example, the interface
of the class Patient in the domain model of Figure 6.12 comprises the property allergies

defined in this class as well as the two properties defined in its general Person, more precisely
the properties name and homeAddress.

Following the UML Superstructure [4], stereotypes apply to a specific element and, therefore,
clients do not inherit stereotypes from their generals. However, if we look at the domain model
in Figure 6.13, from a security perspective, all security levels specified for features of Person

should also apply to Patient as these features are accessible through the Patient’s interface. As
the features are defined in the scope of the annotated class, assigning the security annotations
to the features is valid. Accordingly, even as inheritance is not explicitly considered in UMLsec
and stereotype applications are not inherited, we assume UMLsec secure dependency to work
as follows. The features are inherited together with their security level but security levels of
features not defined within the class are not inherited.

Overriding is a second part in the area of inheritance not explicitly considered in UMLsec. A
question to answer is whether it is allowed to override a classified feature, e.g., an operation or
property, and if it is allowed which security level this overriding feature must be annotated. Also,
it is unclear if we can override a non-classified feature with a classified feature. As the classified
feature is usable in the context of the parent where no security information is available, this
might rise issues. To avoid inconsistencies, we assume that UMLsec security requirements are
consistent across inheritance hierarchies. Extending the definition of UMLsec secure dependency
to consider such cases is out of scope in this thesis and could be done in future works.

Finally, considering the covariant overriding of UML, a challenge lies in relating signatures
defined in a «critical» to the features contained in a class signature. While in this case
the expected behavior is clearly given by the UML Superstructure, the technical realization is
complicated and has not been realized in CARiSMA. For this reason, in this thesis, we do not
make use of covariant overriding.

6.3.5 Refinements of UML Models

While we use TGGs to synchronize artifacts with different metamodels on a comparable level
of abstraction, the single UML models created at MDD have the same metamodel but entirely
different levels of abstraction. Accordingly, we need a different mechanism for realizing tracing.
To keep things simple for developers, we do not want to introduce new language constructs or
elements to the UML. For this reason, the single UML models are directly connected by explicit
trace links based on standard UML language features. An example of these refinements is shown
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in Figure 6.13. On the left of the figure, the design model from Figure 3.3 is shown and on the
right the domain model from Figure 3.2. The two models are visually separated by a dashed
line. The User in the design model realizes the Person from the domain model. The described
refinement relations are crossing the dashed line separating the two models.

In what follows we discuss the suitability of the different refinement relations for tracing
between UML models with different abstraction. Thereby, we have to consider three constraints:

1. The usage of relations has to be within the semantic meaning of the relations as specified
in the UML Superstructure [4].

2. There should be no conflicts with the synchronization between UML class diagrams and
the implementation introduced in Section 6.2.

3. The tracing has to be integrated with UMLsec.

While the definition of Dependency in principle fits our needs, it is too abstract. Only based
on this relationship type, we cannot easily distinguish between dependencies within a model and
trace links across the different models. Here, the more specific versions of a dependency (Ab-
straction and Realization) fit our needs better. Considering models with different abstractions,
the more concrete elements realize more abstract ones. For this reason, the more detailed Real-
ization is even more suitable for our purpose of tracing than the more general Abstraction. The
drawback of these two relationships is that none of the two has been integrated with UMLsec.
Such an integration partly exists for the more classic inheritance relations Generalization and
InterfaceRealization. However, as shown in Section 6.3.4 also this integration is not complete. In
addition, there are two significant drawbacks of these two relationships. First, not every consid-
ered refinement relation is realized in the way that the more detailed element is an instance of
the more abstract element. Considering the refinements between the domain model and design
model in Figure 6.13, for the two classes Patient sub-typing might make sense, however, the
User is not really an instance of a Person but only an element for representing Persons in the
software system. Second, the two relationship types are part of UML class diagrams translated
by the TGG presented in the previous section. If we use Generalization and InterfaceRealization
for tracing, the challenge is to distinguish between uses of these relationships that should be
translated by the TGG and those that are used for tracing.

In summary, there are cases in which the establishment of an inheritance relation makes sense
and is beneficial but there are also cases in which this makes no sense. As inheritance is specified
on a class level but overriding takes place on a feature-level, e.g., operations or properties, the
security-related mapping between signatures gets complicated. In contrast to this, as visible in
Figure 6.12, Realizations are specified between NamedElements its subtypes, including the types
Operation and Property. For example, in Figure 6.13, the property name of the class Person

is duplicated in the design model but also two more fine-grained properties firstName and
lastName are specified for realizing the property from the domain model. Using Realization

relationships, we can make this knowledge explicit. Afterward, these trace links can be used for
propagating security information.

In what follows, we look at realizations in detail. Thereby, we consider realizations with
a different level of detail, the interaction of realizations with inheritance, and security require-
ments specified using UMLsec. As an example, we use a realization of the design model by
an implementation-level UML model that is synchronized with the source code using TGGs.
Figure 6.14 shows the realization of a Patient in the implementation of the iTrust system.

As shown in Figure 6.14a, patients are represented in the implementation by beans that can
be stored and loaded from a database. For this reason, the PatientBean has to contain all
data available in this database object. Among others, this includes the homeAddress of the pa-
tient, that Patient inherits from the class User. Please note that in UML an inherited feature
is marked with a caret (ˆ) when it is visualized. How exactly the PatientBean realizes the
Patient is shown in Figure 6.14b. The property homeAddress of the class User is decomposed
into more detailed properties in the implementation (icAddress1 and icCity) for realizing this
property. This realization is explicitly specified by two realization edges. Also, realizations can
be used to show the internal structure of a class in more detail. For example in Figure 6.14b, it
is explicitly shown that the getter and setter methods getIcStreet1 and setIcStreet1 realize
the external interface for the property icStreet1. For ensuring architectural compliance, we
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Figure 6.15: UML profile for security tracing.

can check whether the realized features are contained in the scope of the realized class. Fur-
thermore, as shown in this example, we can use realizations to explicitly specify refinements also
considering inheritance.

Next, we will look into the realization and impact of the security requirements specified on the
class User using UMLsec. The specified security requirements have to be reflected on the realizing
class. The most simple and naive solution is that every feature that realizes a classified feature
has to be classified at the same security levels. However, in practice, this might not be suitable.
For example, a decomposition into multiple features could separate sensitive information from
non-sensitive information that was aggregated in a single property in the more abstract model.
Considering the home address of a patient, it could be that the concrete address of the patient
(icAddress1) is sensitive information but the city the patient lives in (icCity) not. As icCity
is a more concrete refinement of icAddress, it inherits the security level and has to be explicitly
specified as non-sensitive information. We call such an explicit specification of the non-criticality
of a feature that refines a critical feature as declassification. To allow the specification of such
a declassification, we introduce the stereotype «declassify». If a Realization is annotated
with such a stereotype, this means that the realizing element only realizes a non-sensitive part
of the realized element. Figure 6.15 shows the profile definition of this stereotype. For specifying
which security levels of UMLsec are declassified, the stereotype contains a tagged value for
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every security level specified in UMLsec «critical». The figure shows the tagged values for
secrecy and integrity. If there is a declassification regarding a security level, the value of
the corresponding tagged value has to be set to true. The default value of the tagged values is
false. In Figure 6.14b, we specified that there is no declassification for the property icAddress1

and the property icCity there is a declassification regarding secrecy but not integrity. Based on
this information, we can derive the required security requirements for the refining class and can
check their consistency with the security requirements of the refined class. For this purpose, we
define the security requirement of Secure Realization.

Definition 3 (Secure Realization) A system fulfills Secure Realization if for every feature 𝑓𝑎
of a classifier 𝐴, that appears in the {𝑠𝑒𝑐𝑟𝑒𝑐𝑦} resp. {𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦} tagged value of a «critical»

on 𝐴, the following conditions hold:

(i) For each feature 𝑓𝑐 of a classifier 𝐶 that has a realization dependency to 𝑓𝑎 which is not
stereotyped «declassify» with the tagged value {𝑠𝑒𝑐𝑟𝑒𝑐𝑦} resp. {𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦} set to true,
the feature 𝑓𝑐 has to appear in the 𝑠𝑒𝑐𝑟𝑒𝑐𝑦 resp. 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 tagged value of a «critical»

on 𝐶.

(ii) There is either no feature 𝑓𝑐 of a classifier 𝐶 that has a realization dependency to 𝑓𝑎 or
at least one feature 𝑓𝑐 of 𝐶 that has a realization dependency to 𝑓𝑎 that is not stereotyped
«declassify» with the tagged value {𝑠𝑒𝑐𝑟𝑒𝑐𝑦} resp. {𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦} set to true.

The first condition expresses that every feature that realizes a classified part has to be clas-
sified, too. The second condition expresses that a feature should either not be realized or there
has to be at least one realizing feature that realizes the classified part of the realized feature.

Considering the example in Figure 6.14, Secure Realization is fulfilled for homeAddress. For
the verification of the security requirement, we have to check the realization of the property
homeAddress regarding the two security levels secrecy and integrity. First, we check the first
condition of Secure Realization for every Realization dependency. We start with the real-
ization by the property idAddress1. As this realization is not annotated with «declassify»,
the «critical» of PatientBean has to contain icAddress1 on both security levels (secrecy
and integrity). These expected classifications are given in the example. The realization by
the property icCity is stereotyped with «declassify» whereas secrecy is set to true. For
this reason, icCity only has to appear on the security level integrity of the «critical» on
PatientBean. As also this is given in the example, Secure Realization’s first condition is fulfilled.
The second condition is also fulfilled as there are realizations of both security levels.

Please note, that the considered classifiers 𝐴 and 𝐶 are non-injective. Accordingly, we can use
Secure Realization also for propagating security requirements within a class when the internal
realization is specified as in the example in Figure 6.14. In this example, the getter realizes the
secrecy part of the property icStreet1 and the setter the integrity part. Accordingly, the getter
is added to the security-level secrecy and the setter to integrity of the «critical» stereotype on
the class PatientBean.

In summary, the use of Realization relations for expressing refinements allows easy detection
of changes that lead to inconsistencies, as the relations can be used as trace links. For tracing
security requirements among UML models with different levels of abstraction, we introduced a
new stereotype that allows the definition of detailed realization and decomposition rules and is
supported by a security check that allows for checking the security compliance of the realizations.
Unfortunately, unlike the correspondences using TGGs, we currently do not provide automation
in updating the different UML models in case of changes.

6.3.6 Tool Support for Model Refinements

While for editing the UML models any UML modeling tool can be used, we are using Papyrus as it
supports the CARiSMA plugin for checks of UMLsec. In addition, we provide support to the user
in mapping elements between UML models and creating refinement relations. Our tool support
is based on name mappings between Classes, Interfaces, Nodes, Actors, and Artifacts. This name
mapping can be supported by providing a dictionary containing synonyms. Also, we discussed
the tracing of UMLsec security requirements between UML models with different abstractions.
For supporting the security tracing and realization, we specified a security realization profile
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(a) Dialog page for selecting the refined model. (b) Dialog page for selecting the synonyms.

Figure 6.16: Dialog pages of the UML model mapping wizard.

Figure 6.17: View for creating mappings between UML models.

that allows the detailed specification of security realization. This profile comes with a check that
checks for the security compliance of the propagated security requirements at their realization.

We implemented a wizard that allows the selection of the models between which refinement
relations should be established. Figure 6.16 shows two pages from this wizard. When the wizard
is launched, it searches for all UML models within the current workspace selection. On the first
page of the wizard, the developer has to select the model that should be refined, and on the second
page the refining model. Figure 6.16a shows the page for selecting the abstract model that should
be refined. The page for selecting the refining model looks the same but the already selected
model is excluded from the list of models. On the third and last page of the wizard, developers
can select a comma-separated file containing synonyms. Figure 6.16b shows the corresponding
wizard page. When a file has been selected, a preview of the file is shown. In the example, user
and person are defined as synonyms as well as doctor and hcp.

After all input data has been selected in the wizard, possible mappings are calculated based
on the names of the model elements. Found mappings are presented to the developer in the
view shown in Figure 6.17. For all elements, for those possible abstract elements they could
refine have been found, an entry is shown. If this entry is opened, e.g., the class User in the
second row of the view, possible refined elements are shown. For the class User, this is the class
Person. Results that should be persisted in the models, can be selected with a tick. Afterward,
realizations are created for the selected elements.

6.3.7 Conclusion on Tracing within UML Models

As the maintenance of trace links is a prerequisite in various domains, by making use of well-
defined UML mechanisms we get tracing but also consistency checks between UML models with
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Figure 6.18: Implementation-level model of classes involved in the search for
a patient as part of UC28.

different abstraction in many projects for free. However, as we only provide a low level of autom-
atization, a significant effort is required for maintaining trace links between the UML models.
This effort might be infeasible for larger real-world software systems. Nevertheless, we demon-
strated how tracing within UML models can be realized and exploited for propagating UMLsec
security requirements. Also, there is the possibility for improved tool support in future works.

6.4 Tracing and Propagation of Security Requirements

In the previous two sections, we discussed how we can create and maintain trace links between
the different UML models and the implementation. However, in the two sections, we mainly
focused on the model-level or structural traces between the models and the implementation. Until
now, we neglected the security tracing between models and the implementation. Here, practical
observations show that tracing and maintaining security properties across system representations
is manually laboriously and error-prone [181]. For this reason, using the GRaViTY development
approach, security experts should specify security requirements only once on the most suitable
system representation. Afterward, GRaViTY allows the reuse of security requirements across
the different artifacts in the context of security analyses. For example, in Section 8.1, we will use
the UMLsec security annotations to determine the sources and sinks of an implementation-level
secure data flow analysis.

In this section, we utilize the introduced trace links for answering RQ1.3 of how to propa-
gate design-time security requirements into the implementation. For this purpose, we show two
possibilities of exploiting the generated trace links. First, we specify Java annotations equiva-
lent to the UMLsec stereotypes on the source code level. Instances of these Java annotations
are also available at run-time. In Chapter 9, we use these security annotations for a run-time
security monitor. To create and maintain these security annotations, we show an extension of
the TGG introduced in Section 6.2. Second, we show how the correspondence model can be used
for dynamically propagating security requirements.

6.4.1 Persistence of Security Requirements in the Implementation

In GRaViTY, we mainly work on UML models and Java source code as well as its byte code and
program model representation. In what follows, we introduce security annotations to support
both kinds of artifacts.

To annotate UML models we make use of the existing UMLsec stereotypes [72], focusing
on the Secure Dependency property, as exemplified in Section 3.6.1. More specifically, this
contains the stereotypes «secure dependency», «critical», and «call». In Figure 6.18, we
show the UMLsec security annotations on an implementation-level model used as an example for
synchronization. UC28 of iTrust specifies that licensed health care professionals (LHCP) shall
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Table 6.2: Mapping between UMLsec and GRaViTY’s Java annotations.

UMLsec stereotypes GRaViTY annotations
stereotype tagged values annotated annotation parameters

«critical» secrecy, integrity Class @Critical secrecy, integrity
«critical» secrecy Member @Secrecy
«critical» integrity Member @Integrity

1 @Critical(secrecy ={"search(String ,String):List"})

2 public class SearchUsersAction {

3

4 private PatientDAO patientDAO;

5

6 @Secrecy

7 public List <PatientBean > searchForPatientWithName(String firstName ,

String lastName) {

8 try {

9 if("".equals(firstName)) firstName = "%";

10 if("".equals(lastName)) lastName = "%";

11 return patientDAO.search(firstName , lastName);

12 }

13 catch (DBException e) {

14 return null;

15 }

16 }

17 ...

18 }

Listing 6.1: Source code with GRaViTY’s security annotations of a class for
accessing patients in iTrust.

have the possibility to search for their patients in the iTrust system. This search is realized in the
SearchUserAction class that utilizes a PatientDAO class for this purpose. Following Figure 6.14,
some of the information about patients stored in PatientBeans is classified. For this reason, the
methods providing access to the patient beans are also classified regarding secrecy.

Mapping UMLsec Stereotypes to Code-Level Security Annotations

Java annotations provide a similar mechanism as UML profiles to annotate Java source code,
that can be retained at run-time. We thus defined a set of Java annotations to support typical
security requirements aligned with the set of annotations as introduced in UMLsec, so that source
code (especially fields and methods) can be annotated.

Table 6.2 gives an overview of the Java annotations we define and their relation to respective
UMLsec stereotypes. The Java annotations @Critical, @Secrecy, and @Integrity are used seman-
tically identically to their UMLsec counterparts. UMLsec’s «critical» provides all information
regarding security levels within the tagged values secrecy and integrity. Similar to this we defined
the parameters secrecy and integrity which provide, as well as «critical», arrays of member
signatures. Usually, methods and fields are annotated by stating them as part of the respective
values of «critical». To avoid errors by mistyping and keep clarity in larger classes, we also
support that methods and fields can directly be annotated with @Secrecy and @Integrity respec-
tively. As shown in Section 5.2.8, the program model used by us can also contain information
about Java annotations, making these implementation-level security annotations also available
in the program model.

In Listing 6.1, we applied the GRaViTY annotations to the Java source code of the class
SearchUsersAction implementing the corresponding class from the UML model in Figure 6.18.
This class allows legitimate users of iTrust to search for patients and access their data. The
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Figure 6.19: TGG Rule for translating @Critical-annotations in an implemen-
tation-level model to «critical»-stereotypes in a UML model.

value secrecy={searchForPatientWithName(String, String):String} of «critical» is rep-
resented by a @Secrecy annotation on the searchForPatientWithName method in line 6 of the
example. Additionally, the security requirement secrecy is specified for a member with the signa-
ture search(String, String):List in the @Critical annotation in line 1 which is called in line 11,
reflecting the corresponding entry in the tagged value secrecy of the «critical» in Figure 6.18.

Using the presented mechanisms, developers can specify the same security requirements on
both UML models as well as Java source code. In the next section, we show how these two
security specifications can be synchronized.

Propagation of Security Requirements

To synchronize the UMLsec annotations with GRaViTY security annotations in source code,
besides the mapping between the different annotations from Table 6.2 a mapping between UML
elements and Java source code is needed. Considering the problem of tracing UML elements
to Java source code, mappings have already been defined in various reverse-engineering ap-
proaches [182, 161]. Unfortunately, existing mappings only consider a one-shot mapping. Thus,
the challenge is to keep up with the continuous evolution of both, UML models and source code.
Furthermore, GRaViTY should not only be able to map ordinary UML elements and source code
but should also cover UMLsec stereotypes and GRaViTY annotations.

Existing approaches use graph transformations providing model synchronization to deal with
the issues arising from evolution [129, 161]. Similarly, we employ a Triple Graph Grammar
(TGG) [158], a rule-based transformation supporting the synchronization of changes made on
both the source and target model, as described before. When applying a TGG transformation
between two models, a correspondence model is built between the two models, capturing which
elements have been translated to each other. This correspondence model is used afterward to
synchronize changes applied to any of the two models with the other model. We extended the
TGG introduced in Section 6.2.2 to support security annotations and successfully applied this
TGG to the example of the thesis generating the annotations shown in Listing 6.1. As an example
of a TGG rule, we show in Figure 6.19 a rule from our extension and explain it in what follows.
This rule is used to translate the @Critical annotation to a «critical» stereotype. The values
of this annotation are translated using separate rules.

On the left side of Figure 6.19, are the elements from an implementation-level model shown,
and on the right side the elements from the UML model. In between these two, the correspon-
dence model is shown. Elements that will be newly translated by this rule are annotated with
a ++ and are highlighted in green. In black and without annotations, we show the required
context for the application of the rule. This context has to be translated using other TGG rules
before this rule can be applied. In the shown rule, we assume as the context that an Abstract-
TypeDeclaration has been translated to Classifier and that an AnnotationTypeDeclaration with
the name Critical has been translated. If we can find this context and there is an untranslated
Annotation of the type Critical we translate it to a «critical» stereotype on the corresponding
Classifier, meaning to add this stereotype to the model. The rule can also be applied in the
opposite direction.
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Figure 6.20: Program model excerpt with Java annotations.

If after the initial transformation new elements are added, these can be translated as shown
above. If elements are deleted, the rule applications for translating them are undone. This results
in a deletion also on the other model.

Let us assume a change in the security knowledge and look at how the developed hospital
system can be adapted to this change using the GRaViTY framework. Due to the introduction
of the European General Data Protection Regulation (GDPR) [48], we got a stronger restriction
in the ways how we have to deal with personal data. Before the GDPR became valid, it was
legal to identify patients based on their names. This information has to be treated with more
sensitivity now. This change in the security knowledge can, for example, be reflected in annotat-
ing the Patient in the domain model in Figure 6.13 with the UMLsec stereotype «critical»

{secrecy={name:FullName}} expressing that the access to this information is only allowed for
legitimate cases. As this security annotation is inherited by the more concrete subtypes, the
secure dependency check will fail after this change, since there are no corresponding changes
on the other elements. Accordingly, this gives a list of accesses to the developers, which have
to be checked for this purpose. To do so, the developers have to look into the documentation
and can follow the trace links generated by GRaViTY. Furthermore, they can use the TGGs to
transfer the new security annotations into the code and re-execute the security analyses to get
more detailed feedback about the compliance of the implementation.

Tool Support for Synchronizing Security Requirements

The presented TGG rules allow synchronizing security annotations between the UML models and
the implementation. Propagation of the security annotations into the program model, e.g., for
security checks, is already given by the TGG presented in Section 6.2. As the introduced security
annotations on the implementation level are specified as Java annotations, these are handled by
the transformation rules for Java annotations. Figure 6.20 shows an excerpt of the program model
created from the example in Listing 6.1. The excerpt contains the class SearchUsersAction,
the method searchForPatientsWithName, and the two security annotations (@Critical and
@Secrecy). Both annotations are represented by instances of the type TAnnotation that have
a reference to a TAnnotationType specifying the type of the annotation. The tagged values of
«critical» respectively the parameters of @Critical are represented by instances of the node
TAnnotationValue where tKey identifies the parameter by its name and tValue holds the value.

This native representation of security annotations allows the propagation of these into the
program model but is not easy to use. When we want to specify a security check, we always
have to handle pairs of annotations and types. Also, the signatures contained in a «critical»

are only present in textual form. To make the handling of security requirements on the program
model level easier, we defined the security extension shown in Figure 6.21. For every security
requirement contained in the Java annotations from Table 6.2, we define a corresponding sub-
type of the general TAnnotation in the type graph. This allows us to use the security-specific
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Figure 6.21: Extension of the type graph adding explicit types for UMLsec
security requirements.

:TClass

tName = "SearchUserAction"

:TClass

tName = "PatientDAO"

:TMethod

tName = "search"

:TMethod

tName = "searchForPatientWithName"

:TMethodSignature:TMethodSignature

:TMethodDefinition:TMethodDefinition :TCall:TSecrecy

:TCritical

tKey = "secrecy " 
tValue = "search(String,String):List"

:TAnnotationValue :TAnnotationType

tName = "TCritical"

:TAnnotationType

signaturessignatures

definitions

defines

definitions

defines

accessing targettAnnotation

tAnnotation

secrecy

tValues
type

tName = "TSecrecy"

type

Figure 6.22: Program model excerpt with security annotations.

annotations as we would use arbitrary Java annotations but allows us to identify these by their
type and to add additional explicit information. For the TCritical annotation, this explicit
information is the resolved signatures (TSignature) put to a security level. Furthermore, to ease
the usage in cases where it only has to be checked if an element is critical, we define a common
parent type (TAbstractCriticalElement).

Figure 6.22 shows again a program model excerpt for the source code shown in Listing 6.1 but
this time using the explicit security types. The TAnnotation nodes have been replaced by their
typed equivalents and the secrecy classification of the method search has been made explicit by
a secrecy reference from the TCritical node to the corresponding TMethodDefinition node.

Technically, we implemented the addition of these explicit types in terms of a postprocessor
registered at the IPostprocessingPM extension point of the program model TGG. After the
program model has been created, this postprocessor takes every TAnnotationType representing a
security annotation and replaces all TAnnotation nodes instantiating this type with an instance
of the corresponding type from the extension shown in Figure 6.21. While doing this, the
preprocessor disables the change tracking of EMF to avoid triggering reactions, e.g., a change
propagation by the TGGs. If a security annotation has been added to the program model,
a preprocessor registered at the IPreprocessingPM extension point adds a reference to the
corresponding TAnnotationType for allowing the propagation into the implementation.
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Figure 6.23: Correspondence model between the UML model and program
model of the iTrust excerpt.

Conclusion of the Security Persistence Mechanism

In conclusion, TGGs allow the propagation of security requirements between design-time models
and the implementation. Using postprocessing, easily understandable security annotations can
be propagated into the program model. Also, the security requirements are editable on any
system representation and are available at run-time. As a drawback, the information contained
in the single representations is significantly increased.

6.4.2 Dynamic Tracing between UML Models and the Implementation

One drawback of persisting security requirements as Java annotations in the implementation is
that it makes the source code more complicated and less readable. Often information about
security requirements is not always needed but could be looked up dynamically when needed.
Here, the correspondence model created between the implementation and the UML models by
the TGGs cannot only be used for propagating changes between the artifacts but also for tracing
security requirements.

Utilizing Correspondence Models for Dynamic Security Tracing

As the correspondence model holds the information about all structural correspondences, we
can use this information to look up the corresponding implementation element for an element
annotated with UMLsec security requirements. Accordingly, we can also look up the correspond-
ing model element for given source code elements and if the corresponding model elements have
UMLsec security requirements.

Figure 6.23 shows the correspondence model between the UML model excerpt shown in
Figure 6.18 and the program model excerpt shown in Figure 6.22. The underlying graph structure
of the UML model is shown on the left of the figure. The elements from the UML model are
represented by typed nodes connected according to their relations in the visual UML model. On
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Figure 6.24: Excerpt from the metamodel for the correspondences between
UML models and program models.

the right of the figure, the program model is shown. Correspondences are indicated by circles in
the center of the figure that connect corresponding elements with arrows.

In the following, we assume that we develop the method searchForPatientWithName and
want to know which security requirements apply for this method. In the program model, this
method is represented by a triple of TMethod, TMethodSignature, and TMethodDefinition

whereas the TMethod node contains the name of the method. The TMethodDefinition represents
the implementation of the method and is the start point for tracing. Over the correspondence
model, this operation is connected with the operation representing the method in the UML model.
From this operation, we can navigate to the class defining the operation by following the owner

reference. There we can check whether this class is annotated with security requirements. The
class SearchUserAction defines the operation searchForPatientWithName and is annotated
with a «critical» putting two signatures to a security level. Accordingly, the same security
requirements have to apply to the implementation represented by the program model. To check
whether one of these applies to the method searchForPatientWithName, we have to calculate
the signature of the operation we traced it to and have to check if this signature is contained in
the list. For this operation, this is the case and we know that we develop a method that is on the
security level of secrecy. In the same way, we have to check if any of the methods called by the
TMethodDefiniton realizing searchForPatientWithName are put to a security level. Finally,
we can trace every access relation in the program model to their corresponding dependencies in
the UML model. In the figure, one TCall relation is shown that corresponds with a dependency
in the UML model. For dependencies, we can immediately check whether these are annotated
with UMLsec security requirements. In this case, the dependency is annotated with secrecy.

Tool Support for Dynamic Tracing

The implementation of the dynamic tracing is entirely based on the features of the eMoflon
tool and the EMF implementation. When specifying a TGG, one step of the specification is
specifying possible correspondences between the model elements. From this specification, an
Ecore metamodel is generated by eMoflon.

One challenge at dynamic tracing using an eMoflon correspondence model is the reverse-
navigation along the source and target edges of a correspondence. The correspondences, that are
shown in Figure 6.23, build a separate model that connects elements from different models. Every
circle indicates a correspondence node that has two outgoing references. Figure 6.24 shows the
excerpt of the correspondence metamodel used in Figure 6.23. The correspondence metamodel
itself only contains the types labeled with Correspondences all other types are referenced types
from other metamodels. First, there are the metamodels of the models that should be related by
correspondences. In the figure, these are the UML metamodel and the type graph of our program
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model. Second, there is the eMoflon metamodel specifying the type AbstractCorrespondence.
All correspondences subtype this type to be usable in eMoflon. Also, an informal specification
from the eMoflon metamodel is that every correspondence has to define two references called
source and target. These two references indicate which element types the concrete correspon-
dence relates. As eMoflon cannot add additional references to the metamodels between which
a correspondence model is defined, the source and target references are only navigable starting
from a correspondence. Here, EMF offers the possibility of reverse navigating edges which is
based on a cache of all incoming references to an object. However, from a performance side, this
is not efficient and might be an issue for applications of dynamic tracing.

One application in which we use a correspondence model for dynamic tracing is the creation
of a correspondence model between the UML model and the program model. For synchronizing
these two models we did not specify a TGG but emulate this synchronization by a subsequent
execution of the other two TGGs. However, we also want to provide the possibility for direct
dynamic tracing between these two models. For this purpose, we defined a correspondence model
between UML models and the program model. An instance of this program model is created by
dynamically tracing every MoDisco element to the corresponding elements from the UML model
and the program model. For every pair, for that a correspondence type has been defined in the
UML to PM correspondence model, we create the corresponding instances.

At creating the correspondence model between a UML model and program model we mit-
igated this risk of inefficiency due to reverse-navigation correspondence edges by adjusting the
usage of dynamic tracing. First, we do not directly iterate over all MoDisco elements but overall
correspondences of one of the two correspondence models. Starting from these correspondences,
efficient navigation to two of the three models is possible. For the other correspondence model,
we initially iterate over all correspondences and building our own cache structured according to
our needs, namely a one-to-many map taking MoDisco elements as key.

Conclusion on the Dynamic Security Tracing

Dynamic tracing using the correspondence model created by eMoflon allows to trace between
models and to propagate security requirements without enriching the source code with this
information. However, there is the risk of inefficiency due to the need for reverse navigation
along the edges of the correspondence model. This risk can be mitigated by constructing usages
of dynamic tracing in a way that reduces reverse navigation to a minimum. Also, caching has
been shown as an effective measure to deal with this issue.

6.4.3 Conclusion on the Propagation of Security Requirements

We have shown that we can propagate arbitrary security requirements within UML models of
different abstraction but also between UML models and the implementation and program model.
For this purpose, we investigated two different mechanisms for tracing security requirements.
First, we extended the TGG transformation to create corresponding security requirements in
the implementation as Java annotations. Second, we looked at how a dynamic tracing using the
correspondence model works. Both mechanisms come with benefits and drawbacks and should
be used complementary as discussed in what follows.

The dynamic tracing avoids enriching the implementation with additional annotations but it
can have the disadvantage of being inefficient due to reverse navigation. If only a few traces are
required across the correspondence model or an efficient cache has been created, dynamic tracing
should be used to avoid distracting developers. This distraction by creating too many annotations
in the implementation is the main disadvantage of propagating all security requirements into the
implementation. However, if many annotations are required for analysis, the propagation is more
likely to be efficient. Also, the created annotations are available at run-time. Altogether, small
local look-ups should be realized using dynamic tracing, while for full compliance checks or at
deployment the UMLsec security requirements should be propagated into the implementation
using additional TGG rules. Unfortunately, current implementations of TGGs do not allow to
dynamically enable and disable TGG rules but could be extended in this direction.

To conclude, our TGGs provide an automated mechanism to preserve consistency between
the three different program representations for managing evolving Java programs. As a result,
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we obtain a model-based framework for arbitrarily interleaving program evolution and mainte-
nance steps. Furthermore, we can use this approach to also translate and synchronize security
requirements of model elements between different system representations to execute sophisticated
security checks on them as discussed in Section 8.1.



97

Chapter 7

Application to Legacy Projects

using Reverse-Engineering

This chapter shares material with the MODELS’2019 publication łSecure Data-Flow Compliance
Checks between Models and Code based on Automated Mappingsž [22].
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Figure 7.1: Concept for the application of GRaViTY to legacy projects.

While the approach presented in this thesis allows developers to develop and maintain secure
software product lines, it is limited to projects that have initially developed using GRaViTY. In
practice, software systems are often developed not using models as essential development artifacts
at all [8]. Nevertheless, informal modeling approaches are widely spread in the industry [183]. If
models are created at design time, these are often not maintained in the implementation phase
and do not reflect the current state of the software system. However, even in such software
projects, migration to developing the software system using GRaViTY should be possible. For
this reason, in this chapter, we investigate the reverse engineering models and trace links required
by GRaViTY. By doing this, we answer the second research question of this thesis:

RQ2: How can we apply model-based security engineering to legacy projects that have no or
disconnected design-time models?

As indicated and shown on top of Figure 7.1, legacy projects can be in various conditions.
Usually, all legacy projects have source code, that can be used without changes. Some legacy
projects might have some early design models. However, usually, their relation to the source
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code is unclear and has to be restored. If these early design models are too abstract or not
present, it is necessary to reverse-engineer UML class diagrams with an abstraction suitable to
GRaViTY’s Triple Graph Grammars (TGG)s used for synchronization and tracing, as introduced
in Section 6.2. In summary, there are two sub-research questions to consider if we want to cover
the two described states of legacy projects:

RQ2.1: How can we support legacy projects for that no design-time models exist in model-based
security engineering?

RQ2.2: How can we migrate legacy projects that have models but that are disconnected from
the implementation to model-based security engineering?

In this chapter, we introduce reverse-engineering techniques allowing us to overcome this lim-
itation for legacy projects. Following the sub-research questions, first, we discuss the application
of the TGGs introduced in Section 6.2 to legacy projects for which no models exist and an entire
reverse-engineering is necessary. Second, we consider projects for which models for which no
correspondence model with the implementation exists.

7.1 Reverse-Engineering UML Models Using TGGs

TGGs allow a bidirectional transformation between a source and a target model, meaning that
TGGs can be executed in two directions. First, for propagating changes from the source model
to the target model, and second, for propagating changes from the target model to the source
model. If one of the two models does not exist, propagating the changes means the creation of the
non-existent model as specified in the TGG rules. In Section 6.2, we introduced a TGG using the
implementation-level MoDisco model representing Java source code as source model and a UML
class diagram as target model. For reverse-engineering UML models from the implementation, we
can execute the UML TGG in the Java to UML direction after parsing the Java source code. In
Section 6.2.4, we successfully used the UML TGG to reverse-engineer UML class diagrams from
20 Java projects. This transformation not only extracts a UML class diagram but by nature also
automatically creates the required correspondence model for the subsequent tracing of changes.

However, the created UML models are on the granularity of the implementation and ad-
ditional more abstract models have to be extracted manually. The only abstraction from the
implementation is the reduction of details from the statement level of methods and fields to
dependencies between classes. Nevertheless, this abstraction provides a significant reduction in
complexity in terms of used dependency types but also the number of considered dependencies.
Size is one important aspect when it comes to the manual handling of models. For this reason,
Figure 7.2 shows the size of the UML models created in Section 6.2.4 from software systems with
different sizes. For relating these values to other models representing the same software systems,
also the sizes of the corresponding MoDisco models and program models (pm) are shown. All
models seem to grow more or less linearly with the number of code lines. But while the program
model has on average 28% of the number of nodes the MoDisco model has, this relation is only
at 11% for the extracted UML models.

Furthermore, using suitable views on the extracted models, these can effectively be anno-
tated with UMLsec security requirements. The UML supports the concept of views that allow
visualizing selected elements of a UML model [4]. A single UML element can be part of multiple
views on the UML model. This allows developers to create views of a manually manageable
size focusing on specific aspects of the software system, e.g., a security-critical dependency or
classified class member.

Such views can be extracted automatically, e.g., using model slicing [184, 185] or cluster-
ing [186, 187]. At model slicing, starting from a given element all elements related to this
element according to slicing rules are selected as part of this slice. At clustering, elements are
grouped according to their coupling with each other. Given suitable slicing rules or coupling
criteria, both approaches can be used to get all additional elements relevant to a developer when
inspecting a specific UML model element. Based on these elements a suitable view can be cre-
ated. However, there lies a significant challenge in defining suitable rules and criteria. Often, too
many elements are selected. Here, the UMLsec stereotype can function as a source for additional
coupling information improving the quality of the extracted views.
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Figure 7.2: Model sizes in relation to the code lines of software systems.

In summary, UML class diagrams that have been reverse engineered using our UML TGG
are not as beneficial as manually created UML models but provide a foundation toward proper
reverse-engineered models. Models with a higher degree of abstraction can be manually extracted
from the reverse-engineered ones. Using the realization dependencies these extracted models
can be connected to the reverse-engineered models as discussed in Section 6.3. However, often
early design models exist but no trace links to the implementation exist and these might be
deprecated. In the next section, we show how trace links between these early design models and
the implementation can be restored in a semi-automated way. Of course, this approach could
also be used to establish trace links between the reverse-engineered UML models and the early
design models.

7.2 Mapping Early Design-Models to Code

In this section, we aim to support the reconstruction of a correspondence model between early
design-time models and the implementation. We aim at the creation of a state allowing the
application of GRaViTY. Furthermore, during the reconstruction, we can also discover secure
data-flow compliance violations between the designed and the implemented security requirements
in a software system. These violations can emerge if the models and code have not been kept
synchronized using our approach introduced in Section 6.2.2 and divergences between the planned
and implemented design manifested themselves. We present a technique that semi-automatically
establishes a correspondence model between a Security Data Flow Diagram (SecDFD), a design-
level model enriched with security-relevant information, and the implementation-level Program
Model introduced in Chapter 5.

Our correspondence model and the proposed semi-automated reconstruction of the corre-
spondence model support software architects in the early discovery of implementation absence,
convergence, and divergence concerning the planned software design, including its security re-
quirements. Furthermore, the correspondence model can be used to discover compliance viola-
tions of secure data-flow properties (typically, data confidentiality and data integrity properties)
as follows: The designed data flow is captured in the SecDFD model. The actual data flow is
obtained from implementation-level data-flow analysis tools. These tools typically require so-
phisticated meta-data, e.g., an explicit tagging of security-critical data and functions, as input,
which can be obtained from our correspondence model. We discuss the leveraging of such corre-
spondences in detail in Chapter 8. In this section, we focus on the creation of a correspondence
model and make the following contributions:
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1. We present an automated technique for establishing a correspondence model between
design-time models in the SecDFD notation and program models. Thereby, we support
the discovery of secure data-flow compliance violations as discussed in Section 8.2. The
key idea of our technique is twofold. First, we define a mapping between SecDFD and
program-model element types, constraining how elements of a concrete software system
can be mapped to each other. Second, we combine similarity-based matching of element
names with structural heuristics (based on data-flow properties) to automatically derive
suggested correspondences between the SecDFD and the program model based on the pre-
viously defined mapping.

2. We present an incremental methodology, in which the user of the methodology, e.g., a
developer that wants to reconstruct a correspondence model, is involved to successively
discover new correspondences and eventually derive an adequate correspondence model.

3. We present our implementation of the approach as a publicly available Eclipse plugin and
the evaluation of its accuracy on five open-source Java projects (including the running
example iTrust).

7.2.1 Background on Early Design Models

We aim at developing a semi-automated approach for reconstructing correspondence models
between early design models and the implementation. For developing this approach, we have to
select which design models we want to support. Here, we consider two criteria. First, we aim at
models that are used in practice, and second, at keeping the approach as transferable as possible.
For this reason, in this section, we discuss the background of early design models.

Security threats to software systems are a growing concern in many organizations, particularly
due to the recent changes in legislation (GDPR) and upcoming security standards (ISO 21434).
Therefore, one needs to consider security early in the design phase, when little is known about
the software system. At the start of the development process, requirements are collected and use
cases are defined. According to the principle of security by design [5, 188], the software system’s
assets and threats already have to be defined in this phase. The system architecture is then
iteratively refined and finally implemented. Before any new functionality is released, it must be
checked that every security assumption made in any of the phases is met. The state-of-the-art
for these checks in practice is manual code reviews by security experts. Since such reviews are
expensive and error-prone, they are only performed on selected code parts, leaving a large leeway
for security threats [95, 94].

In the context of software architecture design, threat analysis techniques, like Microsoft’s
STRIDE [108], attack trees [189], CORAS [190], and threat patterns [191] aim to identify secu-
rity threats to software systems. Threat analysis is very helpful to detect security threats early
and plan countermeasures to mitigate them. Yet, empirical evidence shows that existing threat
analysis techniques can be manually labor-intensive [192] and lack automation [193]. Further-
more, design-level models are seldom kept in sync with the implementation, potentially resulting
in architectural erosion and technical debt [92].

Threat analysis is often performed on a graphical representation of the software architecture
called Data Flow Diagram (DFD) [194, 195]). DFD-like models are extensively used in practice,
e.g., in the automotive industry [107] and at Microsoft [108] as part of their STRIDE method-
ology. UML activity diagrams can be used for the same purpose. Still, the DFD notation is
informal and lacks the ability to specify security requirements, which is needed to reason about
security threats at the design level. To support the detection of problematic information flows at
the design level, previous work extends the DFD notation with security-relevant information [196]
and security semantics [109]. However, the outcomes of such detection are of limited value if
the implementation does not comply with the security requirements described in the DFD. In
contrast to DFDs, UML activity diagrams provide clearly defined semantics. However, if we only
consider the activities and the data flow between them, they can be seen as a DFD.

7.2.2 Semi-Automated Mapping Approach

Assuming a correct DFD, the way it is implemented can vary depending on concrete design, e.g.,
depending on the selected architectural patterns, and implementation-specific decisions, e.g., the
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Figure 7.3: Semi-automated mapping of implementations to DFDs.

chosen programming language. Therefore, a full automatic generation of a correct and complete
correspondence model between DFDs and code is not feasible. Yet, a manual specification of the
same correspondence model is inefficient and error-prone. To this end, we propose an iterative
methodology for interactively guiding the user in finding an adequate correspondence model by
combining automated mappings with user decisions as shown in Figure 7.3. Thereby, we assume
that the domain model is specified using data flow diagrams or activity diagrams describing
high-level processes in the domain as introduced in Section 3.6.2. As discussed in the background
section, activity diagrams can be seen as DFDs with additional control flow and all approaches
applicable to DFDs can be applied to activity diagrams. For this reason, in what follows, we only
focus on DFDs. In step 1, correspondences between DFD elements and implementation elements
are calculated using a heuristic technique. In step 2, these correspondences are presented to the
user and manually checked by her. In step 3, the user can manually map additional elements.
Afterward, the automated mapping is executed again, benefiting from the user input. The process
terminates when the user cannot find any additional correspondence or finds a violation.

In this section, first, we define a mapping of DFD to element types that may correspond
to each other as a basis for a correspondence model in concrete software systems. Second, we
describe the steps of our methodology, including the automated technique, in detail. We show
how our automated technique in step 1 establishes a concrete correspondence model between
DFDs and their implementations by using naming- and structure-based heuristics and explain
the interactive steps 2 and 3 of our techniques. As an example, we use the DFD showing the
reset of a user’s password in the iTrust system by the user. This DFD has been introduced in
detail in Section 3.6.2. Figure 7.4 shows the same DFD as the one in Figure 3.8 used for the
introduction of DFDs.

The implementation of this DFD has been shown in Listing 2.1 as part of the running ex-
ample chapter of this thesis (Chapter 2). The most relevant excerpt from the method calls
involved in the implementation of this DFD is shown in Figure 7.5. The update of a password
starts with the call of the method changePassword(long, String,String,String). As shown
in the DFD, the implementation of this method has the user’s MID, the new password, and
the old password as parameters. In the implementation, the new password has to be entered
two times to avoid typos, adding a fourth parameter. When this method is called, first the
password of the user is checked using the authentificatePassword(long,String):boolean

method. Next, it is checked if the new passwords are equal using the equals method. Af-
terward, the resetPassword(long:String) method is called. This method prepares an SQL
statement and executes it to update the password in the database of the iTrust system. Among
others, this is mainly realized by calling the methods prepareStatement and executeUpdate.
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Figure 7.5: Program model excerpt of the implementation for resetting a
password in the iTrust system.
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Figure 7.6: Rule describing the name matching for methods.
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Figure 7.7: Rule for extending name matches based on return types.

Identification of Corresponding Meta-Model Elements

As a prerequisite for mapping DFD elements to source code elements to find correspondences,
first we have to define which DFD element can correspond with which source code elements.
Here, the source code is represented by the program model introduced in Chapter 5.

Assets → types: The assets in a DFD are the elements holding critical data. On the level of
implementation, data is usually stored in fields, processed using variables, and transmitted
using parameters and return values. A single asset can be stored in many locations at the
same time which makes it infeasible to map an asset to every single location. The only
property of an asset which only changes rarely in programs, written in an object-oriented
language, is the type of the asset.

Data stores → types & methods: Considering data stores like iTrust’s database in the ex-
ample DFD, it is quite obvious that this data store is reflected in the implementation by
operations realizing queries. Also, the data store could be a field in a class, e.g., a map
used as a cache. But it could also be implemented by an operation that, e.g., requests
the cached values from an external server by creating HTTP requests. The common thing
between these variants is the type used to represent the data at storing. The field has a
type that provides getters and setters for using the data store, and the method used to
get data from a remote server is implemented in a type. Therefore, we map data stores to
types as well as to the methods used for accessing the stored data.

Processes → method(-names): Processes in DFDs describe functionalities that process data,
like methods in implementations do. These two elements correspond with each other.
While a concrete method definition in an implementation contains all details describing the
functionality of this method, the processes only have a name describing the functionality.
We assume that a developer implementing a process will choose a similar name for the
methods implementing this process. This leads us to a correspondence between the names
of processes and the names of methods.

Processes + Assets → method parameters: Between processes in a DFD, data can be ex-
changed using flows, where the exchanged data are represented by assets on the flows. In
the methods implementing these processes, the same data have to be exchanged. Data
between methods in implementations are usually exchanged using parameters and return
values. Therefore, we can combine the name mappings between processes and methods
with the assets flowing into and out of a process to method parameters giving us the
corresponding method signatures.

Steps of the Semi-Automated Mapping Approach

Our semi-automated mapping approach is based on an iteration of three subsequent steps. First,
an automated step, followed by two manual steps. In the first step, possible correspondences
between the models and code are automatically detected. These correspondences are reviewed by
the user of the approach in the second step and are partly extended in the third step. Afterward,
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the first step is executed again until the user has nothing to add in the third step. In what
follows we discuss the three steps of our semi-automatic generation of correspondences in detail.

Step 1: Automated Mapping of Elements. The automated generation of correspondences
is based on name matchings and structural heuristics, which are sequentially executed and com-
plement each other in building mappings from which correspondences are derived. For illustra-
tion, we formalize two of our mappings using graph rules. For the specification of these graph
rules, we use a notation inspired by algebraic graph transformation [197]. The other mappings
can be formalized analogous.

Name matching: First, the names of elements from a DFD are mapped to the corresponding
names in the implementation. Asset and data store names are mapped to the names
of types and process names are mapped to the names of methods. Figure 7.6 shows a
rule for mapping processes from a DFD to method names from a program model. A
correspondence (visualized as a circle connecting the corresponding elements) between a
process and a method name is created (denoted by ++) if the constraint at the top of the
rule holds. In this case, the names of the two elements on the left and right of the rule have
to be equivalent. The precise definition of this equivalence is described in what follows.

Names, both in a DFD and in a Java implementation, are usually built by concatenating
multiple words. For example, a Java method name resetPassword consists of the word
reset and password. These words can vary slightly in the names of the corresponding DFD
processes, e.g., in plural form, passwords instead of password. In addition, the style of word
concatenation can differ. In Java usually, the camel case (resetPassword) is used, whereas
in DFDs this is not a prescribed style, so underscores may also be used (Reset_Passwords).

To deal with these issues, first, we split the strings at frequently used delimiters and
upper-case characters. This gives us for our example the sets of words [reset, Password]
and [Reset, Passwords]. Then we compare the lower-case versions of the words with each
other using a fuzzy comparison based on the Levenshtein distance [198]. The Levenshtein
distance is a measure of the minimal amount of characters which have to be removed, added,
or flipped to change one word into the other one. For the given example this distance is
zero and one as the first word is already identical and only the character s has to be
added to change password into passwords. We accept different distances between words for
considering them as identical according to the length of the words to be compared.

Finally, a DFD process is usually implemented in multiple methods, typically having
slightly more concrete names. For example besides the method resetPassword, there
might also be an additional method internalResetPasswod involved in the implementa-
tion of the process Reset_Passwords. But the name of a DFD process might also contain
additional information, e.g., the process Reset_Password of the DFD in Figure 7.4 could
be called Reset_Passwords_in_DB. To address this challenge, we compare all words from
the two names with each other and count the similar words. If this number reaches a
threshold of more than half the number of the average words of the compared names, we
consider the names sufficiently equal.

For the example DFD in Figure 7.4 and the program model excerpt in Figure 7.5 we
get a name match between the reset password process and the two method names
authentificatePassword, changePassword, and resetPassword as well as a match be-
tween the process change password and the same three method names. While two of
these matches are expected, the match between rest password and changePassword as well
as authentificatePassword are unexpected and should be dropped in the following steps.

Extending Name Matches to Method Signatures: For every method name, multiple sig-
natures may exist. Even if our name matches were always perfectly correct, this would not
imply that all signatures with this name are the ones corresponding to the matched pro-
cess. For example, besides the relevant signature resetPassword(long, String):void, there
is a second signature resetPassword(long,String, String,String,String,String):String defined
in iTrust but belongs to the implementation of a different use case. Also, there could be
additional signatures in libraries, e.g., the Java standard library, which might even are
never used in the implementation of iTrust. To identify the actually relevant signatures,
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we use data-flow information about assets flowing into and out of a process. Information
flowing into a process has to be passed to the implementation of the process, for example,
as a parameter value. Likewise, information leaving a process can leave it over return
values and parameters. Accordingly, we can use the mapped assets to identify relevant
signatures. For every signature, we count how many mapped assets are compatible with
the parameters and return types of the existing signatures. If we have at least one match
we consider this signature for further mappings.

A rule for extending a process mapping based on an asset flowing out of a process is shown
in Figure 7.7. On top of the rule, we can see an existing mapping between a process and
a method name, e.g., created by the rule shown in Figure 7.6. A mapping to one of the
signatures having this name is created if there is a mapping between an asset flowing out
of the process and a type which is the return type of the signature.

If we look at the parameter types of the signature resetPassword(long, String) and
assume that the newPassword asset from Figure 7.4 has been mapped to the implementa-
tion class java.lang.String and ID to long, we accept this signature as corresponding
with the process reset password. The other method name mapped to this process was
changePassword. While the parameter types match the expected assets, there are more
parameters than data in the DFD. Also, the return type of this method signature is Status
that has not been mapped to any asset. Accordingly, we do not create a mapping suggesting
a correspondence between the two elements.

Finding Implementations of Signatures: The last step is to find concrete implementations
of a signature corresponding with the process. For every signature, there might be several
concrete implementations, all of which do not necessarily correspond to the process. We
make use of the flows between different processes to find the concrete method definitions.

If there is a flow from one process to another, this does not only mean that there has to
be a signature that has the capability to return or receive the corresponding asset. Also,
there has to be a definition of this signature which is called from a definition mapped to
the other process. Therefore, we search for two kinds of data flows between the concrete
definitions of the signatures found before.

1. Parameters passed by a call from the source of a flow to the target of the flow.

2. Return values returned at a call from the target of a flow to the source of the flow.

The flow between two such definitions is not necessarily a single direct call between the two
definitions. There can also be multiple definitions in between forwarding data. Matching
such intermediate methods to one of the two involved processes is non-trivial. However, if
we found such a flow, we can definitely assume that we found two definitions implementing
at least parts of the two processes. The intermediate definitions can be partly mapped to
one of the two processes by considering the internal coupling in a process. For every pair of
signatures mapped to the same process, we look for pairs of definitions calling each other.

Cleanup: After mapping assets and processes, we have to decide which mappings are most
likely to be correct and, therefore, should be presented to the user as proposed correspon-
dences. For that reason, we introduce a certainty score for our mappings to be proposed
as correspondences. This score is calculated concerning the quality of the underlying name
matching as well as the coupling of mapped elements with other mapped elements. For
every DFD element, we only present mappings whose score is higher or equal to the median
score of all mappings for this element.

The mappings sorted out in this step are not presented to the user but may be discovered
later again in the interactive process, based on future matches, which might have a coupling
to the elements that are now discarded.

Step 2: User Verification of Mappings. The mappings created in the previous step are
now presented as proposed correspondences to the user and verified by her. For every asset type,
data store type, and process-definition mapping the user can perform three actions:
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Figure 7.8: Screenshot of the semi-automated mapping UI in Eclipse.

Accept: The user can accept the mapping as a correspondence. From then, the mapping cannot
be discarded by the optimization step of the automated mapping approach anymore, and
all mappings coupled to this mapping obtain a higher certainty score.

Reject: The user can reject the mapping. From then, this mapping is never presented to the
user again and it is not considered anymore for extending it to other mappings. All other
mappings to which the rejected mapping has been extended will be removed, too. However,
these extended mappings might be presented to the user again.

Tolerate: The user can choose to ignore some suggested mappings. Mappings that are not ex-
plicitly accepted or rejected are suggested again and can be re-assessed in future iterations.

Mappings accepted or rejected by the user allow the heuristic to automatically discard related
mappings that have only been found by following up the rejected mapping. This is how the search
space is reduced in the next automated iteration. Conversely, manually accepting mappings can
increase the score of related mappings and, for this reason, allows proposing new mappings which
have not been considered as correct before. One limitation of our heuristic is that it cannot detect
mappings that are outside the search space created by the initial name mappings. We overcome
this limitation in our approach by including user feedback as described in what follows.

Step 3: Manual Mapping of Elements. To increase the search space, an additional user
step is conducted after the user manually verified the automatically created mappings that have
been proposed as correspondences (or at least a part of them). In this step, the user has to add
at least one new correspondence to give additional input to the automated mapping algorithm.
The selection of this manually mapped element can have a large impact on the efficiency of the
following automated mapping steps when starting over from step 1. Only, when all name matches
are included in the search space, the automated mappings can detect all correspondences.

7.2.3 Tool Support for Semi-Automated Mappings

The presented semi-automated mapping approach is implemented and packaged as a publicly
available Eclipse plugin1. The implementation leverages an existing implementation for modeling

1Repository containing the implementation of the semi-automated mapping approach: https://github.com/

SvenPeldszus/GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
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Table 7.1: Projects considered in the evaluation of the semi-automated map-
ping approach.

source code DFD

project lloc classes methods elements

jpetstore 1,221 17 277 47
ATM simulation 2,290 57 225 85
Eclipse Secure Storage 2,900 39 330 41
CoCoME 4,786 120 512 44
iTrust 28,133 423 3,691 31

SecDFDs with an Xtext DSL with editor support [109]. We use the TGG presented in Chapter 6
for generating the program model from Java source code.

Figure 7.8 shows a screenshot of the user interface in Eclipse. On the left-hand side of the
figure, users can see Eclipse’s standard Package Explorer. The bottom windows are used for
displaying and defining the mappings. The top two windows are used for displaying the source
code (left) and the SecDFD (right). The target audience of the tool is software developers (or
code reviewers) with training in the principles of software architecture. After the installation of
the required packages, the program is started as a running Eclipse instance.

The developers first manually create one or several SecDFDs for representing the high-level
architecture of a Java project, cf., top right window in Figure 7.8. Next, using context menu
entries, the developers trigger the automated generation of a program model from the source code
and start the first iteration of the semi-automated process for mapping the SecDFD elements to
source code elements, see Section 7.2.2.

At the start of each iteration, the developers are shown a list of mappings suggested as
correspondences, cf., bottom window in Figure 7.8. Since one SecDFD element is usually mapped
to several program elements, the results are grouped by the SecDFD elements. For each SecDFD
element, the list of mapped program model elements is shown, each with its path in the source
code. The developers can interact with the tool by accepting, rejecting, and manually defining
correspondences. All proposed correspondences that are not explicitly accepted or rejected are
considered as tolerated. A mapping suggested as correspondence is accepted or rejected with a
right-click on the entry and selecting accept or reject, respectively. Once a mapping is accepted,
corresponding in-line markers are created on the SecDFD and in the source code. Double-clicking
a mapping or correspondence will open the correct source file and navigate to the correct line
in the file. Mappings accepted as correspondences can always be rejected. If all the suggested
mappings are correct, the developers can select accept all. Rejected mappings will never be
suggested again. The manual definition works by right-clicking and selecting Map Selection to
SecDFD on source code elements. At the end of the iteration, developers can either stop or select
continue to trigger a new search refining the present mapping.

7.2.4 Evaluation

In an experiment, we applied our approach to five open-source projects to evaluate the perfor-
mance of our implementation. In what follows, we briefly describe the design of the experiment,
the projects, and the results.

In our evaluation, we investigated the correctness of the automatically generated mappings
proposed as correspondences. To this end, we set up an experiment to compare a ground truth
of manually created correspondences with the generated mappings for each of the five considered
projects. The iterative approach involves the user guiding the generation of mappings in the
desired direction. As per this design choice, we intentionally investigate the correctness of the
automated mappings and the impact of the user separately. Consequently, the evaluation aims
to answer the following objectives.

O1śCorrectness: What is the correctness of the automated mappings generated by the plugin?

O2śUser Impact: What is the impact of the user on the correctness of mappings?



108 Chapter 7. Application to Legacy Projects using Reverse-Engineering

Table 7.1 depicts the characteristics of five open-source Java projects used in the evaluation.
In what follows, we briefly introduce the considered software projects.

Jpetstore [199]: This is a web application built on top of MyBatis 3, Spring, and the Stripes
framework. This is an example with very few classes, implementing the basic functionalities
of a web store. In principle, the users can create their accounts, browse, and order goods
online. Jpetstore has been designed as a minimal demonstration application for MyBatis,
which should have a good design and documentation. The developers tried to strictly follow
the MVC pattern.

ATM simulation [200]: This is an implementation of a simulation for an automated teller
machine (ATM) developed for academic purposes. The ATM simulation implements the
main procedure of a control system. Upon start-up, a new session is initiated, and the users
can insert their bank card and PIN. The session continues upon a correct PIN entry and
provides the users with the option of a withdrawal, deposit, balance inquiry, and money
transfer. After the completion of desired transactions, the ATM returns the bank card and
optionally prints the receipt.

Eclipse Secure Storage [201] Eclipse Secure Storage is used for ensuring secure storage and
management of sensitive data within a developer’s Eclipse workspace. The secure storage
allows for plugins to authenticate and have controlled access to workspace resources.

CoCoME [202]: CoCoMe is a platform for collaborative empirical research on information
system evolution [203]. This platform helps engineers manage different aspects of software
evolution, such as the software system life-cycle, versioning artifacts, and comprehensive
evolution scenarios. The implemented software system is a cash register.

iTrust [46]: As described in Section 2, the iTrust example is a web application for a hospital
that allows the hospital’s staff to manage medical records of patients, based on 55 use
cases. The example originally stems from a course project, has been maintained by a
research group at North Carolina State University, and was used as an evaluation example
in research papers before [51]. Detailed requirements describing different activities are
available online [46]. However, the available requirements and use cases mostly describe
very simple tasks and only a few of them are realized in the implementation.

The experiment was executed by the author of this thesis and the second author of [22]. The
authors worked on the projects individually and compared their results at each step. First, the
authors modeled the SecDFDs for all five projects manually. To this aim, the authors inspected
all available documentation (including the source code) and reverse-engineered a high-level ar-
chitecture. Second, the ground truth was created for each SecDFD by following the execution
of the modeled scenarios, and manually mapping the executed methods and transferred data to
the processes and assets of the according step. The ground truth is a JSON file with a list of
expected correspondences the elements of the SecDFD and a uniquely identifiable location of the
source code element. Third, the implemented plugin was used to find the automated mappings
in several iterations. Each iteration included accepting, rejecting the automated mappings, and
defining correspondences manually by highlighting elements in the source code and specifying the
corresponding SecDFD elements. After each iteration, the precision and recall of the automated
mappings were logged.

This study shows promising results for guiding the user in the discovery of compliance vio-
lations. In particular, Table 7.2 shows measurements of high precision and recall only after a
few iterations for realistic Java projects. Each iteration consists of an automated, and a manual
(user input) phase. We present the precision and recall for the automatically suggested corre-
spondences in each iteration. We also depict the amount of manually accepted, user-defined, the
sum of all accepted and user-defined, rejected correspondences, and the impact of the user-defined
correspondences on recall (in that order). The later iterations make use of the manually defined
correspondences for finding additional mappings that can be proposed as correspondences.
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Table 7.2: Results of the mapping after each iteration.

automated manual

project it. precision[%] recall[%] accept+u (
∑︀

) reject recall[%](∆)

jpetstore 1 56.1 51.1 23 + 3 (26) 18 57.8 (+6.7)
2 96.4 60.0 1 + 3 (30) 1 66.7 (+6.7)
3 96.8 66.7 0 + 5 (35) 1 77.8 (+11.1)
4 97.4 82.2 2 + 3 (40) 1 88.9 (+6.7)
5 100 93.3 2 + 3 (45) 0 100 (+6.7)

ATM 1 72.0 40.0 18 + 3 (21) 7 46.7 (+6.7)
simulation 2 67.6 51.1 2 + 5 (28) 11 62.2 (+11.1)

3 70.5 68.9 3 + 5 (36) 11 80.0 (+11.1)
4 76.6 80 0 + 4 (40) 13 88.9 (+8.9)
5 95.5 93.3 2 + 3 (45) 2 100 (+6.7)

Eclipse 1 73.0 90.5 40 + 1 (41) 14 92.9 (+2.4)
sec. storage 2 67.7 100 1 + 0 (42) 12 —

CoCoME 1 27.9 77.3 17 + 1 (18) 44 81.8 (+4.5)
2 86.4 90.5 1 + 1 (20) 2 90.9 (+0.4)
3 90.9 83.3 0 + 2 (22) 4 100 (+16.7)

iTrust 1 23.5 80.0 8 + 1 (9) 26 90.0 (+10.0)
2 81.8 90.0 0 + 1 (10) 2 100 (+10.0)

O1śCorrectness

In what follows, we discuss the recorded data of our experiment regarding the first objective.
First, we introduce our methodology for measuring the correctness of the mappings proposed as
correspondences, and afterward, we discuss the results.

Setup. We measured correctness in terms of precision and recall (dependent variables). Con-
ventionally, precision (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 )) is measured as a ratio between the true positives (i.e.,
mappings correctly proposed as correspondences) and all generated mappings proposed as cor-
respondences (including the false mappings). A true positive 𝑇𝑃 is a correct correspondence
between the source code and the SecDFD element which is listed in the ground truth. A false
positive 𝐹𝑃 is a mapping between the source code and SecDFD element that is not listed in the
ground truth. Recall (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) is measured as a ratio between the true positives and
all correct correspondences, including the overlooked correspondences. A false negative 𝐹𝑁 is a
mapping between the source code and the SecDFD element which is present in the ground truth
but has not been identified.

Results. We start by reporting the correctness of the automated mappings in the first iteration.
The average precision of the first iteration is 50.5%. On average, the recall of the first iteration
is 69.8%. Yet, both the precision and the recall increase after the first iteration. On average, the
final precision and recall of the automated phase are very good (87.2% and 92%, respectively).

The average difference between the recall of the second iteration and the user-impacted recall
of the first iteration (last column in Table 7.2) is 4.5%. This means that on average, the auto-
mated search was able to increase the recall between the first and second iteration by 4.5%. On
the other hand, the average difference between the user-impacted recall of the second iteration
and the recall of the third iteration is minimal. This means that the automated search was not
able to increase the recall significantly between the second and third iteration.

O2śUser Impact

For evaluating the user impact on the created mappings, we discuss the recorded data as described
in what follows. First, we introduce how we calculated the user impact based on the recorded
data and discuss the results afterward.
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Setup. Our approach’s implementation automatically derives trivial mappings from the user-
defined correspondences, raising the recall before a new iteration starts. Therefore, the impact
of the user-defined correspondences is measured as the difference in recall before, and after the
added correspondences.

Results. On average, the user accepted less (7) mappings as correspondences than they rejected
(9.6) and defined only 2.6 correspondences manually. However, in three cases (jpetstore, ATM
simulation, Eclipse Secure Storage) the user accepted more mappings than rejected. This means
that the user could quickly scan the suggested mappings and eliminate the ones that are obviously
wrong. Overall, adding a few correspondences manually resulted in a more fruitful next iteration.
For instance, adding three correspondences manually in the first iteration of evaluating the ATM
simulation resulted in two new correct mappings proposed as correspondences (see accepted
mappings of the second iteration).

On average, the user impact on the recall was an increase of the recall by 7.9%. This means
that the users were indeed able to guide the discovery of compliance violations. Further, the
users had a larger impact on increasing the recall in later iterations compared to the automated
search (7.9% vs 4.5%). Notice, that on average 75% of all correct correspondences (𝑇𝑃 ) are
suggested to the user and do not have to be manually defined.

Additional Observations

While we were executing the evaluation we made different observations that are not directly
covered by our research questions but give further proof for the effectiveness of our approach.

1. All DFDs were created based on the available documentation. At executing the evaluation
on the ATM simulation we recognized an absence between the created DFD and the im-
plementation. Further investigations revealed that there is really an absence between the
documentation of the ATM simulation and its implementation.

2. At studying the different examples from our evaluation we noticed big differences between
the different implementations. The more realistic or real examples (Eclipse Secure Storage,
CoCoME, and iTrust) have a source code structured much better than the other two more
artificial examples. While in the realistic examples functionalities are implemented in
multiple methods, in the artificial examples single methods realize multiple functionalities.
These differences are one of the reasons why our technique performed better on the realistic,
larger examples. A hypothesis to be studied in the future is that writing the code with the
DFD in mind can help structure it better and get better mappings.

3. In the experiments, we had to manually accept and reject mappings proposed as correspon-
dences repeatedly. Thereby we learned that users can reduce the number of necessary clicks
by first rejecting asset mappings, then accepting process mappings, and in the end accept-
ing asset mappings and rejecting process mappings. This order ensures that a maximal
amount of rejects and accepts is performed automatically.

7.2.5 Threats to Validity

We identified threats to the validity of our experiments regarding three categories. In this section,
we discuss these threats.

External Validity

The main threat to external validity is our selection of samples, based on a limited number of open
source projects, partially originating from a teaching context. The rationale for our selection was
the manual effort for creating the ground truth of our technique, a full correspondence model
between high-level DFD elements and low-level program elements. However, as a result, the
generalizability of the results to larger projects in other domains is limited. To mitigate this
threat, the considered projects were chosen to be representative of realistic projects by providing
good documentation, including architectural information, such as wikis, use cases, scenarios,
requirements, state charts, and the like. The available documentation enabled building good
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design models, close to the intended architecture. We plan to extend the evaluation in the future
to include a more comprehensive set of projects.

Internal Validity

Regarding internal validity, the main threat of our evaluation is researcher bias. In absence
of pre-existing ground truths and design models, the ground truth and design models for our
evaluation were created manually by the authors, possibly introducing a risk of creating a biased
result. To mitigate this threat, the ground truths and the design-level models were carefully
discussed between all authors. The created models and ground truths are of similar size and
complexity and are available online2.

Construct Validity

Concerning construct validity, we consider the threat of misinterpreting divergence, absence, and
convergence compliance violations in the context of design-level models and implementation-
level models. However, to the best of our knowledge, our interpretations are in line with the
existing literature [92]. As such, the implementation of the approach does not perform low-
level static or dynamic checks to verify the intended security requirements of SecDFD assets.
This threatens the intention of the approach to holistically analyze security requirements. We
discuss the possibilities to extend the plugin to include static and dynamic checks as future
work. The implemented plugin only notifies the user about the accepted, defined, and missing
correspondences with in-line information markers. Thus, the user decides what compliance issues
the correspondences identify. Yet, the implementation can be easily extended to support active
proposals of compliance violation types.

7.2.6 Conclusion on the Semi-Automated Mappings

We presented an interactive, semi-automated approach for mapping concrete implementations to
SecDFDs with the aim to reconstruct a correspondence model and to perform conformance checks
of the implementations with the SecDFDs as well as security checks on the implementations. In
the proposed approach mappings are iteratively calculated by heuristics and are presented as
proposed correspondences to a user for verification. Furthermore, the user guides the automated
mapping by actively adding additional correspondences.

The approach has been evaluated on five open-source projects (including Eclipse Secure Stor-
age [201]) and shows good precision and recall for the initial, automatically created mapping.
Our evaluation shows that new mappings can be found by considering the user input in later
iterations. Consequently, both the user and the proposed heuristics contribute to the discovery of
new mappings. All in all, the user is not only guided through the implementation by our tool, but
also assisted in creating the correspondence model between SecDFDs and their implementations.

Using this semi-automated approach, users can interactively discover convergence, absence
and divergences between the SecDFDs and their implementations. Also, the security information
available in the SecDFDs can be used for executing security analyses on the source code level.
We discuss these applications in detail in Chapter 8.

7.3 Conclusion on the Application to Legacy Projects

In this chapter, we discussed the application of GRaViTY to legacy projects considering two dif-
ferent scenarios. First, we considered software projects in which no design-time models describing
the software system exist. Here, we discussed how the required models and correspondence mod-
els between the design-time models and the implementation can be reverse engineered using
GRaViTY’s synchronization mechanism introduced in Section 6.2. Second, we considered legacy
projects in which early design models are available but are disconnected from the implementation.
To restore this connection in terms of a correspondence model, we introduced a semi-automated
mapping approach.

2Semi-automated mappings implementation and evaluation data: https://github.com/SvenPeldszus/

GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
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The two approaches can be used complementary with each other in projects containing early
design models. First, developers can reverse engineer UML class diagrams using the TGGs, and
afterward, reconstruct the correspondence model between the DFDs and the implementation.
These correspondence models can then be used to create trace links between the DFDs and
reverse engineered UML class diagrams. This allows to transfer security requirements from
SecDFDs into the class diagrams and avoids specifying these again. However, currently, this is
not included in the presented reverse engineering approach.

To conclude on the application of GRaViTY on legacy projects, the proposed reverse en-
gineering approaches allow reconstructing models and correspondence models that allow the
application of GRaViTY. The reverse-engineered UML class diagrams can continuously be syn-
chronized with the implementation using GRaViTY’s synchronization mechanism without any
adaptions. The correspondence model created between early design models and the implemen-
tation is a snapshot of the current state and cannot be automatically synchronized. However, as
outlined, they build a basis for propagating security requirements and reconstructing the model
hierarchy used by GRaViTY.
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Chapter 8

Static Security Compliance Checks

This chapter shares material with the FSE’2017 publication łModel-based Privacy and Secu-
rity Analysis with CARiSMAž [73], the‘ MODELS’2019 publications łSecure Data-Flow Com-
pliance Checks between Models and Code based on Automated Mappingsž [22], the DKE’2021
publication łOntology-Driven Evolution of Software Securityž [204], the EMLS’2020 publication
łModel-driven Development of Evolving Secure Software Systemsž [152], and łChecking Security
Compliance between Models and Codež submitted for publication.

The continuous checking of a software system for security violations is one important task for
ensuring the security compliance of a software system under development. Traditionally, security
compliance is checked in manual security audits, e.g., as specified in the IEEE 1028-2009 standard
for software reviews and audits [93]. As the effort for such audits is very high, audits are only
performed from time to time. For this reason, approaches like SecDevOps encourage system
developers to make use of frequent and automated security checks [125]. In the GRaViTY
approach of this thesis, we follow the same principle of frequent automated security checks
but in combination with automated reuse of security specifications among these security checks.
Furthermore, while approaches like SecDevOps mainly focus on local fine-grained security checks
as discussed in the state of the art (Section 3.6), GRaViTY aims at security checks covering the
design-time models and implementation.
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Figure 8.1: Interaction of security checks in the overall concept.

To enforce the appropriate implementation of security requirements, there are various kinds
of security checks available in existing works that can be integrated into GRaViTY. According
to Figure 8.1, in GRaViTY, we perform security checks on all three artifacts considered in the
overall concept. The key idea is to follow the principle of security by design and to specify and
verify security requirements from the very beginning [27]. In GRaViTY, we not only support
the verification of security requirements within an artifact but also continuously check security
compliance within all specified security requirements in later software design phases. Thereby,
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no security check stands on its own, but they interact with each other and should be used
complementary. Currently, the process of transferring security requirements among different
phases of system development is being performed manually. To reduce the required effort and
the probability of mistakes but also to allow further reuse of security requirements, developers
should be assisted by automated tool support. In this chapter, we focus on how such automated
assistance be realized for static security analysis. As most established security checks have been
implemented using high-level programming languages, the verification of their correctness is
challenging. While this verification can be suitable for standard checks that are widely used, this
can limit the application of project-specific security checks. For this reason, we aim at putting
specifications of security checks on a formal basis and investigate the suitability of algebraic
graph transformations for specifying security checks. In this section, we address the third and
fourth research questions of this thesis:

RQ3: How can developers be supported in realizing, preserving, and enforcing design-time se-
curity requirements in software systems?

RQ4: How do changes within a software system affect its security compliance, and how can
these effects be handled?

In this thesis, we consider the third research question from two perspectives. First, in this
chapter, from the perspective of static security analysis, and second, in the next chapter from
the perspective of dynamic security analysis at run-time. For answering this research question
for static security analysis, we address the following two subquestions:

RQ3.1: How can we automatically verify a software system’s compliance concerning design-time
security requirements?

RQ3.2: How can formal approaches be used for the specification of security violation patterns?

Considering the development of a software system, it is continuously subject to change. For
all changes applied to a software system, it is essential to check the security compliance after the
application of changes to ensure the software system’s security. As complete security compliance
checks tend to be expensive, we have to find means for effectively only rechecking the changed
parts of a software system after changes. As developers are capable of arbitrary changes, besides
the two sub-questions of RQ3, we consider the third sub-question of RQ4 in this chapter as well:

RQ4.3: How can security requirements affected by arbitrary system changes be identified end
efficiently be rechecked for security compliance?

In what follows, we recapitulate different kinds of security checks introduced in Section 3.6
and in which stages of model-driven software development they can be applied. Afterward, we
discuss our understanding of security compliance within the GRaViTY approach and discuss
the supported security compliance checks in detail. In Sections 8.2 to 8.5, we focus on different
compliance checks for answering RQ3.1. Afterward, we answer RQ3.2 and RQ4.3 in Section 8.6
by applying the formal approach of graph transformations to specify security checks and execute
these incrementally.

8.1 Background on Static Security Analysis

To verify a software system’s security and enforce the appropriate implementation of security
mechanisms, we can use various security checks. This section gives an overview of the existing
security checks reused in GRaViTY, structured by the artifacts on which these are used.

8.1.1 Design Model-based Security Checks

To address security effectively, the paradigm of security by design emphasizes that security cannot
be addressed merely retroactively, by identifying and fixing security loopholes [27]. Accordingly,
developers should address a software system’s security already from the earliest phases of software
design. Design-time models are one of the earliest artifacts created during the development
of a software system. In the following, we review approaches that aim at checking security
requirements in the targeted software system early during its development.
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UMLsec

The UMLsec [5] approach, integrated into GRaViTY, allows the specification and verification of
essential security requirements already at design time. In UMLsec, UML models are annotated
with security requirements like security levels of class members (attributes and operations). These
security annotations are then checked for compliance with different security policies provided by
UMLsec. For example, UMLsec allows, as part of the Secure Dependency security policy, to
check if a UML model contains insecure uses of attributes or operations, that are annotated
with security requirements. In the implementation model, we also annotated the calls and
communication paths with UMLsec stereotypes. For example, in the iTrust electronics health
records system, all data transferred from and to doctors is sent over an internal LAN connection
and all data sent from and to patients is sent over an encrypted Internet connection.

On the design-models level, we can utilize refinement relations between the different model
kinds for detecting security violations at no additional cost for considering multiple models as
discussed in Section 6.3. Also, if a security requirement is changed in one representation we can
immediately see the impact on the other UML representations. However, automated verification
of the security requirements at the implementation level is an open issue.

Detailed information about the UMLsec is provided in Section 3.6.1. Besides UMLsec, there
are approaches like Security Data Flow Diagrams (SecDFD), making use of similar concepts for
the early verification of data flows in a data flow diagrams [109].

Security Data Flow Diagrams

Comparable to UMLsec, Security Data Flow Diagrams (SecDFD) allow the specification of se-
curity requirements at design time. In contrast to UMLsec, in the SecDFD approach, data flow
diagrams are annotated with security requirements instead of UML models. Thereby, SecDFD
is based on security labels for data and processing contracts specifying the intended data pro-
cessing. As discussed in Section 3.6.2, UMLsec and SecDFD can be used complementary or the
SecDFD annotations could be applied to UML activity diagrams.

In this chapter, we use the security labels of SecDFD and the data processing contracts
for compliance checks of the implementation. The specified security requirements can also be
propagated from the SecDFD to the implementation using the correspondence model created
by GRaViTY as introduced in Chapter 6. Furthermore, we use the contracts as an input to a
code-level analysis tool. Thus, we enable compliance checks between planned and implemented
security requirements, see Section 8.4.1.

8.1.2 Static Code Analysis

While design-time security can make security planning controllable, they do not allow security
violations to be actively detected and prevented. In contrast to this, static code analysis is usually
used to detect actual security issues during software implementation. Thereby, the analysis tools
are often integrated within the development environments or build processes.

Analysis of API Calls

Many approaches locally analyze calls to critical APIs and whether the chosen parameters have
been selected securely. This covers, for example, calls to crypto APIs [116] or SQL queries [117].
While those approaches are important for the development of secure software systems, in this
work we focus on whether, e.g., the use of a crypto API, has been implemented in a specific
location specified as in the design-time models.

Secure Data Flow Analysis

A common approach to detect leaks of secret data is a secure data flow analysis. One of the main
problems for a precise data flow analysis is the classification of critical sources and sinks. Many
tools are based on shared libraries of well-known critical sources and sinks, created manually or
by machine learning [41]. However, more precise information, especially about critical sources,
is available in design-time models, e.g., annotated with UMLsec. For example, in Figure 3.6 we
declared the property homeAddress to contain secret values, which has to be considered during
a secure data flow analysis.
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To conclude, multiple suitable approaches for the specification and verification of security
requirements have been developed. On the architectural level, we can use UMLsec and SecDFDs
to design a secure architecture. These approaches allow specifying, propagate, and verify security
requirements. After a software system’s architecture has been implemented, it can be checked in
detail on the source code level. Among others, in GRaViTY, we can analyze the correct usage of
cryptographic methods and analyze data flows within the implementation using existing security
tooling. However, what exactly is analyzed is up to the developers. The successful verification of
the implementation’s compliance with the security requirements specified at design time depends
on the experience of the developers executing such an analysis.

8.2 Structural Compliance between Models and Code

After a secure design of a software system has been created using approaches like UMLsec or
SecDFD, the software system has to be implemented. Thereby, a correspondence model between
the implementation and the design-time models should be created and maintained. For this
purpose, the tool support introduced in Chapter 6 can be used. For successfully certifying a
software system, the implementation must be compliant with the architecture specified in design-
time models. Usually, this compliance is reviewed manually during the certification process.
Since this is tedious and time-consuming, such reviews are expensive and are only performed if
necessary [95]. GRaViTY’s correspondence model between the design-time models and source
code can be used to perform structural compliance checks automatically. At first, it can be
checked if the implementation corresponds with the specification in a DFD or UML activity
diagram. Afterward, the correspondence model can be used to perform more sophisticated
security analyses on the code using security requirements from design-time models.

Identifying the differences and equivalences between the planned and the implemented soft-
ware architecture is the goal of software architecture compliance checking. The compliance checks
can be based on a static set of rules [90], dynamic monitoring of a running software system [91],
or a hybrid of both [92]. In our work, we statically check the compliance of design-level models
with their corresponding implementation. Running compliance checks reveals the relations be-
tween a set of components of the design-level model and a set of components of a program model
extracted from the software system’s implementation.

In what follows, we describe the check we developed to determine if the implementation
corresponds with the specification in the models.

8.2.1 Automation of Structural Compliance Checks

For performing structural compliance checks, we use the trace links contained in the correspon-
dence model between the design-time models and the program model representing the implemen-
tation. These trace links allow us to get the corresponding implementation elements for every
model element and to check if they are as expected. Using the structural compliance checks,
we check for the presence of the three relation types introduced in Section 3.5 (convergence,
absence, and divergence). Furthermore, in combination with the semi-automated reverse engi-
neering technique introduced in Section 7.2, developers can interactively check the compliance
of the implementation with design-time models.

Convergence

The easiest case are convergences between the models and implementation. In the context
of a correspondence model between design-time model elements and implementation elements,
convergence means that the user has accepted a suggested correspondence or has manually defined
a correspondence. In the context of security requirements, convergence means that a planned
security contract is implemented at the correct location and no leaks have been detected, e.g., by
a data flow analyzer. All model elements which have been mapped to implementation elements
in the correspondence model and have not been rejected by a user are allowed correspondences.
Following the definition of convergence, the convergences between the design-time models and
the implementation are described by the set of all allowed correspondences. More precisely, we
consider all correspondences in the correspondence model and refinement relations between the
UML models as convergence.
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Absence

If our approach is neither able to map a model element to the code automatically and the user
is not able to map the same element manually when asked to do so, we discover an absence of
specified functionality in the code. Assuming the correctness of models, we only have to consider
the model to code direction of absence (concerning the opposite direction, see divergence). How-
ever, there can be cases of absence that do not result in a violation but are intended abstractions.
For example, the domain models created before developing the software system might capture
concepts that are common for the domain but are not realized in the software system.

Divergence

Absence indicates that the source code is not compliant with the planned architecture due to a
missing implementation. In the context of the security requirements, absence means that security
mechanisms specified on the model level have not been implemented or security requirements are
not fulfilled. Elements present in the source code of the implementation, but not specified in the
design model represent a divergence between the model and code. Here, one can look for model
elements that relate to existing correspondences to find the relative parts of the implementation.
In the context of security requirements, we identify divergence when

(i) there exists an implemented data flow that does not comply with the specified security
contracts at a process node in a DFD or an activity in a UML activity diagram, or

(ii) the analysis with a state-of-the-art data flow analyzer reports a leak of potentially confi-
dential information.

To help the user in discovering divergences between design models and the implementation,
it is possible to show all data flows from members mapped to a design-time element to other
members not mapped to this element. If the target of such a flow has not been mapped to any
process, there seems to be a divergence. But, a divergence also arises if there is a flow between
two processes or activities in the code that has not been specified in the design-time model. If a
critical asset is communicated along with such a flow, this is not only divergent from the intended
design but a security violation.

Using these checks, a developer or code reviewer can detect a compliance issue between
models and the implementation at hand. However, regarding security, these checks are not
precise enough: They might not reveal flows of confidential assets that are not supposed to take
place. For example, if a developer uses a full representation of an object, instead of a stripped
one, all information stored in this object flows into the location of the usage regardless of if this
information is needed there. If this unused information is sensitive it might not be allowed to
flow to this specific location. To this end, we can perform more sophisticated security checks, as
described in the next sections.

8.2.2 Tool Support for Structural Compliance Checks

We implemented a structured view of recorded correspondences for data flow diagrams allowing
developers to inspect the correspondences for divergences. Thereby, the developer is supported
in automatically navigating to the source code locations of selected correspondence. Also, in the
data flow diagrams correspondences are shown in information markers and elements for that no
correspondence exist are highlighted with a warning marker for this absence.

A component diagram of our implementation and its integration with the other components
of GRaViTY as well as external components is shown in Figure 8.2. The structural compliance
checks are implemented in the Structural Compliance component. This component analyzes
the correspondence model created by the Semi-Automated Mappings component, discussed in
detail in Section 7.2.3, regarding, convergence, divergence, and absence.

Figure 8.3 shows a screenshot of the tool support for structural compliance checks. Whenever
a correspondence model between a SecDFD and the implementation is loaded, this correspon-
dence model is automatically checked for convergence and absence. Convergences and absences
are shown in terms of information and warning markers in the DFD. In the example shown in
Figure 8.3, our tooling identified an absence for the change password process.
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Figure 8.2: Component diagram of the structural compliance checks.

Figure 8.3: Screenshot of the tool support for structural compliance checks.
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8.2.3 Conclusion on the Structural Compliance Checks

In this section, we discussed how the correspondence model maintained by the GRaViTY ap-
proach can be leveraged for verifying the structural compliance of the implementation with
the architecture specified in design-time DFDs. This verification is the most effective when it is
executed dynamically using the semi-automated mapping approach presented in Section 7.2. De-
velopers are assisted with structured views on the existing correspondences and can dynamically
navigate between the models and source code. Currently, only the combination with the reverse
engineering of a correspondence model provides an automatization in the verification of struc-
tural compliance. However, as long as developers continuously apply the GRaViTY approach,
structural inconsistencies should not be possible, as all changes are automatically propagated.
Nevertheless, a frequent analysis for structural compliance is beneficial. In future works, one can
provide an extended automatization of this task.

8.3 Leveraging Correspondence Models for the Calculation
of Security Metrics

The planned structure of a software system’s design has a significant impact on the software
system’s security [205, 27]. One approach to achieve a secure software system is to structure it
into different security levels where only some parts have to be maintained by security experts,
e.g., this kind of structure can be used to isolate subjects for manual security code reviews.
Unfortunately, the quality of such a security design is hard to judge. Furthermore, a software
system’s structure into security level also might erode and increase the effort required for main-
taining security [12]. To deal with such challenges in general software design, OO design-quality
metrics have been developed [206], e.g., the well-known metrics Coupling Between Objects (CBO)
or Lack of Cohesion in Methods (LCOM). Comparably, to continuously measure and quantify
security aspects for detection of such erosion, security metrics have been defined [207, 208, 209].

In what follows, first, we introduce security metrics that have been proposed in the literature
and discuss their limitations in Section 8.3.1. In Section 8.3.2, we discuss how the correspondence
model created by the GRaViTY approach can be leveraged for calculating the discussed security
metrics. Afterward, in Section 8.3.3, we introduce a prototypical implementation of the security
metrics as part of GRaViTY. Finally, we conclude in Section 8.3.4.

8.3.1 Background on Security Metrics

When talking about security metrics, we often think about security metrics such as the ones
from the Common Vulnerability Scoring System (CVSS) [210], measuring the potential impact
of a reported vulnerability (CVE) on the security of a software system using the software. Such
metrics can be useful to decide whether a specific version of a library should be used or comes
with a security risk too high for using the library. However, these metrics do not directly consider
the security of the software system under development.

In this section, we introduce two categories of security metrics that allow us to estimate
specific security properties of a software system itself. First, we introduce metrics that consider
the attack surface of a software system. Second, we introduce a metric that quantifies the
distribution of security-critical implementation parts among a software system.

Attack Surface of Object-Oriented Programs

The first category of security metrics considered by us is related to a software systems exposure to
the outside. Thereby, the key assumption is that the greater this exposure is, the higher is the risk
for security issues. In this context, the attack surface of a program comprises all conventional
ways of entering a software system from the outside [211]. A larger attack surface increases
the danger of exploiting vulnerabilities, either unintentionally by some user or intentionally by
an attacker. Concerning Java-like programs, in particular, explicit restrictions of accessibility of
class members provide an essential mechanism to control the attack surface. However, the attack
surface covers many other aspects such as used sockets, libraries, or files [211]. In these cases, the
attack surface is significantly impacted by a software system’s deployment, e.g., how a firewall is
configured and where other systems the software system communicates with are located. Based
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on the assumption that visibilities can indicate a software system’s attack surface, metrics have
been developed to quantify the attack surface in terms of visibilities.

Total visibility: One idea is to assign numerical values to the visibilities and to sum them up
or average them before and after a change [144]. If the value increases, the visible Java API
increased, too. Accordingly, the total visibility of the Java API can function as a proxy for
the attack surface.

Inappropiate generosity: More sophisticated metrics compare the assigned visibilities of types
and methods with the theoretically possible values [212]. In this approach, the metrics
Inappropriate Generosity with Accessibility of Types (IGAT) and Inappropriate Generosity
with Accessibility of Methods (IGAM) quantify the degree of divergence per type or method.
On the scope of a package or project, the average values can be used. However, there are
two reasons for visibilities higher than possible:

1. The visibility is too wide by mistake, e.g., due to developers not paying attention to
the visibility of the element.

2. The element belongs to the software’s intended API and has to be wider than on the
scope of only the software.

While the first case is clearly an issue, it cannot be solved easily due to the second reason.
By calculating these metrics, one cannot distinguish between the two kinds of reasons when
only relying on the source code. Another limitation of the two metrics is that these do
not reveal unnecessarily high visibilities due to a bad structuring of the implementation.
A high coupling within the implementation technically requires higher visibilities which
makes these valid for the two Inappropriate Generosity with Accessibility metrics.

Considering this discussion, visibilities can provide indicate the attack surface of a software
system but might only have a minor influence on initially entering the software system. Never-
theless, strict visibilities might play an essential role in preventing harm after malicious code has
been injected into the software system. Their application can help developers in reducing the
API that can immediately be invoked from this injected code. However, these metrics do not
consider the security design of a software system.

Distribution of Classified Properties

Metrics explicitly considering the security design of a software system usually quantify the dis-
tribution of security-related elements among the software system or entities belonging to the
software system. Depending on the degree of distribution, the security design of a software
system can be rated.

As an example for this category of security metrics, we consider the Critical Design Proportion
(CDP) metric. This metric measures the ratio between security-critical and not-security-critical
classes [213, 209]. Here, the idea is that this metric is an indicator of the security of the software
system. One can assume that a software system that concentrates security-related data and
functionality in a few security-critical classes is easier to implement and maintain. It is less
likely that changes in a non-security-critical part of the software system have side effects in
security-critical parts of the software system. However, classes that have a higher ratio between
security-critical elements and non-critical elements should be tested more intensively [214]

The Critical Design Proportion (CDP) metric is defined at the scope of a software system’s
class-level design D as follows [213]:

𝐶𝐷𝑃 (𝐷) =
𝑆𝐶

𝐶
(8.1)

Whereas C is the number of classes in the software system and SC is the number of security-critical
classes within all classes such that SC ∈ C. Accordingly, the metric can be applied to both, the
high-level class design such as specified in UML models but also to the detailed low-level class
design of an OO program.

All discussed security metrics are beneficial from an administrative perspective, as these allow
to utilize security experts more efficiently as they can focus on small security-critical parts of
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«critical»

{secrecy=[getIcAddress1():String]}

PatientBean

 + getIcAddress1(): String

 + getMID(): long

HospitalBean

:TClass

tName = "PatientBean"

:TMethodDefinition :TMethodDefinition

:TClass

tName = "HospitalBean"

:TMethodDefinition:TMethodDefinition + getHospitalName(): String

 + getHospitalAddress1(): String

Figure 8.4: Correspondences between a UML class diagram containing secu-
rity requirements and the program model.

the software system. However, measuring such metrics is usually not easily possible as it is not
known which classes are security-critical and which not. This kind of information is required for
all presented security metrics.

8.3.2 Leveraging Traces for Security Metric Calculation

The introduced security metrics (as many other security checks) need information about what
are security-critical parts of the software system, therefore, their application is often not possi-
ble. Most projects do not explicitly provide a detailed security classification on the level of single
classes within the application. Usually, this classification is part of a software system’s docu-
mentation and rather high-level. When approaches like UMLsec or SecDFD are used, detailed
security requirements are available in design-time models. In what follows, we demonstrate how
we can transfer security-related information from the design-time security models to the imple-
mentation. For this purpose, we use the correspondence model between design-time models and
the implementation created by our approach. Chapters 6 and 7 discuss these correspondence
models and their creation in detail.

As an example for leveraging security-related information, we use the Critical Design Propor-
tion metric, specifying the ratio between security-critical and non-security-critical classes [209].
To calculate this metric on the low-level class design, we have to classify all classes within the
implementation as security-critical or not security-critical. For this purpose, we leverage the cor-
respondence model between the implementation of the software system and design-time models
containing the software system’s security requirements.

In this thesis, we consider two model-level security specifications that can be used to obtain the
information required for calculation the CDP metric at the implementation level. First, UML
models annotated with UMLsec stereotypes, and second, the SecDFD security specifications,
introduced in Sections 3.6.1 and 3.6.2.

UMLsec: As the UMLsec secure dependency stereotypes are applied at the class diagram level,
these are of special interest for propagation security requirements suitable for calculating
the intended security metric. Considering UMLsec’s «critical» stereotype, this procedure
is straightforward. In Section 6.4.1, we discussed this propagation of security requirements
in detail. Figure 8.4, shows correspondences between a UML class diagram and a pro-
gram model for a security-critical class (PatientBean) at the top of the figure and a non-
security-critical class (HospitalBean) at the bottom of the figure. The class PatientBean
is considered as security-critical as it is stereotyped with «critical», putting the opera-
tion getIcAddress1 on the security level of secrecy. This class and the operations specified
within the class correspond with the upper instances of TClass and TMethodDefinition

on the upper right of the figure. In the same way, the HospitalBean corresponds with
a TClass at the implementation level. Accordingly, we consider every TClass that corre-
sponds with a Class stereotyped with a «critical» that contains a signature of a feature
(Operation or Property) of this class as security-critical class.
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1 class PatientBean {

2 @Secrecy

3 String getIcAddress1 (){

4 ...

5 }

6

7 long getMID (){

8 ...

9 }

10 }

(a) Security-critical class.

1 class HospitalBean {

2 String getHospitalName (){

3 ...

4 }

5

6 String getHospitalAddress (){

7 ...

8 }

9 }

(b) Non security-critical class.

Listing 8.3.1: Security annotation propagated into classes with and without
security-critical members.

:TClass

tName = "String"

:TClass

tName = "PatientBean"

getIcAddress1Def
:TMethodDefinition

getMIDDef
:TMethodDefinition

getIcAddress1Sig
:TMethodSignature

:TCritical

secrecy = "getIcAddress1():String"

:TSecrecy

definesdefines

signature

returnType

tAnnotation

secrecy

tAnnotation

Figure 8.5: Program model extended with security annotations.

Although the security metrics’ calculation is possible using this dynamic tracing, for sim-
plicity, we assume that the security requirements have been propagated to the implementa-
tion using the Java security annotations introduced in Section 6.4.1. This allows to immedi-
ately calculate the security metric on the program model without explicitly considering the
UML models. An example for a security-critical and non-security-critical class is shown in
Listing 8.3.1. In both classes, the security requirements from the design-time models, such
as shown in Figure 8.4, have been propagated into the implementation as Java annotations.
While Listing 8.3.1a shows with PatientBean a critical class, as it contains the method
getIcAddress1 on the security level of secrecy, Listing 8.3.1b shows the non-critical class
HospitalBean that does not contain classified members. Considering the explicit propa-
gation of the security requirements, the program model shown in Figure 8.4 is extended as
shown in Figure 8.5 for the security-critical class PatientBean. The «critical» stereo-
type is represented by an TCritical node. In addition, the specified signature is resolved
and this information is explicitly added. First, by adding an explicit reference from the
TCritical to the resolved signatures (TMethodSignature). Accordingly, In the example,
a secrecy reference is added from the TCritical note to the TMethodSignature node.
Second, by annotating TMethodDefinitions, whose signature is put to the security level
of secrecy by the class that defines these method definitions, with TSecrecy.
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Hospital DB

Create Invoice

Administartion

:TClass

tName = "String"

1. MID

3. Address2. MID

:TClass

tName = "PatientBean"

getIcAddress1Def
:TMethodDefinition

getIcAddress1Sig
:TMethodSignature

defines

signature

returnType

Figure 8.6: Correspondences between a SecDFD and the program model.

SecDFD: While the correspondence model between class diagrams and source code and the
secure dependency security requirements are between comparable entities, there are sig-
nificant differences for SecDFDs. Even though the SecDFD assets are mapped to types,
they do not necessarily represent security-critical classes. For example, the class String is
used in the implementation of iTrust to represent both secret assets, e.g, the address of a
patient as shown in Listing 8.3.1a, but also other public data, e.g., the name of the hospital
in Listing 8.3.1b.

Figure 8.6 shows the correspondence model between a SecDFD excerpt describing the
creation of an invoice and a corresponding excerpt of the program model representing the
implementation. For example, this figure contains the correspondence between the asset
Address and the type String. As part of creating an invoice, the address of the patient
has to be retrieved from the hospital’s database. Here, the method getIcAddress1 of the
class PatientBean provides access to this information in the database. Accordingly, there
is a correspondence between this method and the data store in Figure 8.6.

We can automatically derive the security-critical classes from the correspondence model by
first identifying the security-critical methods and afterward the classes defining these meth-
ods. If we are going to consider the assets as specified in a SecDFD, the critical methods are
exactly all methods mapped to a process, data store, or external entity in the SecDFD that
is processing an asset tagged as confidential. In the example, the method getIcAddress1

has the return type String that is mapped to the secret asses Address. Also, the method
is mapped to the database that is the source of a data flow propagating the asset Address.
As a consequence, this indicates that the returned String really represents this asset. Ac-
cordingly, we identified a security-critical method in the implementation. Consequently, we
can annotate this method with @Secrecy and the classes with @Critical as we do for the
UMLsec secure dependency stereotypes. Finally, for the considered example, this results in
the same annotations on the program model as the ones derived from the UMLsec stereo-
types. Figure 8.5 also shows the security annotations derived by leveraging the SecDFD to
program model correspondences shown in Figure 8.6.

Regardless of using a SecDFD or UMLsec, in the program model, the security requirements are
represented in the same way, using both the @Critical and @Secrecy annotations. Accordingly,
for counting the number of security-critical classes, we can count two patterns:

1. the number of classes that define a member annotated with @Secrecy

2. or the number of classes annotated with @Critical that has a secrecy reference to a
member defined in the class.

As both patterns represent the same information, we can use any of these two patterns for
calculating the desired metric. After counting the number of security-critical classes, the Critical
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Figure 8.7: Component diagram of the security metrics implementation.

Design Proportion metric for a program can simply be calculated by dividing this number by
the number of classes.

8.3.3 Tool Support for the Calculation of Security Metrics

We implemented the discussed metrics as an extension to the design-flaw detection tool Hulk [33,
20]. Hulk is an incremental rule-based design-flaw detection tool based on the type graph pre-
sented in Chapter 5 of this thesis. The annotation mechanism of the type graph is used to
define annotations representing metrics, code-smells, and anti-patterns. Thereby, more detailed
design flaws are calculated based on locally restricted flaws, e.g, anti-patterns are derived from
the presence of multiple code-smells, and code-smells are usually derived from metrics.

Figure 8.7 shows a component diagram of our implementation of the security metrics. Our
implementation resides in the SecurityMetrics component. This component implements two
interfaces defined by Hulk. First, the IDetect interface specifies the methods that have to be im-
plemented by our extension to allow Hulk to execute a design-flaw detection or metric calculation.
Second, the IFlaw interface is implemented to provide information about the annotations defined
by us for representing instances of the calculated metrics, e.g., the Critical Design Proportion
metric. While the calculation of the total visibility, IGAM, and IGAT has been implemented by
us in handwritten Java source code, for calculating the metric, we defined the metric in a Henshin
rule. For executing this rule, the SecurityMetrics component uses the Henshin component.

Figure 8.8 shows the rule for calculating the Critical Design Proportion metric. The program
model, represented by a node of the type TypeGraph, is annotated with a new instance of this
metric (CriticalDesignProportion) whose value is calculated by a constraint.

For the calculation of the metric’s value, we make use of the concept of amalgamation offered
by Henshin [215]. Amalgamation allows matching a graph pattern as often as possible within a
rule. Such a pattern is denoted by a * in a rule element’s action type, e.g., «preserve*». In the
rule shown in Figure 8.8, we use amalgamation two times. First, to match all types defined in a
program model, and second, to match all elements denoting security-critical types.

In the variable all, we match every TAbstractType in the program model (TypeGraph) that
is not from a library. In the constraint for calculating the metric value, we count all instances of
TAbstractType matched this way giving us the total number of types in the program. For this
purpose, we use the function COUNT provided by Henshin. This function counts the number of
instances assigned to a variable.

For counting the number of security-critical types, we make use of an amalgamation nested
into the almagation already described. This nesting is denoted by giving a path after the specifi-
cation of the amalgamation action. The previously described level of amalgamation is on the first
level (/types). On the second level (/types/security), we count the number of security-critical
types. If a type is security-critical, it is annotated with an instance of TCritical, that has a
secrecy reference to a signature implemented by the type. Also, every type can only be anno-
tated with one instance of TCritical. However, this TCritical can point to multiple signatures.
Accordingly, for counting the number of critical types, we can count the number of TCritical

instances matching the described pattern. Using second-level amalgamation leads to the follow-
ing semantics: For each TAbstractType matched to all, every TCritical with a reference to a
TSignature that is implemented by the type are matched to the variable critical. When we
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Rule CriticalDesignProportion(var all:TAbstractType, var critical:TAbstractType)

«create»

value=Aggregations.COUNT(critical)/Aggregations.COUNT(all)

«preserve»
:TypeGraph

«preserve*/types/security»
critical:TCritical

«preserve*/types»
all:TAbstractType

tLib=false

«preserve*/types/security»
:TSignature

secrecy

«preserve*/types/security»

signature
«preserve*/types/security»

tAnnotation
«preserve*/types/security»

ownedTypes

«preserve*/types»

tAnnotation
«create»

:CriticalDesignProportion

Figure 8.8: Henshin rule for calculating the critical design proportion metric.

count the number of different TCritical assigned to critical, again using the function COUNT,
we get the number of critical types in the program model.

Finally, to get the proportion of security-critical types we can divide the number of security-
critical types (COUNT(critical)) by the number of types (COUNT(types)). The outcome of this
calculation is assigned to the value property of the CriticalDesignProportion node created
by the rule in Figure 8.8.

8.3.4 Conclusion on Security Metrics

In this section, we have shown how to leverage the traces created and maintained by GRaViTY
to calculate security metrics on the implementation level. While these security metrics can be of
practical importance, due to the lack of explicit security knowledge they have been challenging
to calculate before. Also, this might be the reason for only a few implementation-level security
metrics being specified in the literature that considers the security design. In contrast to this,
OO design properties have been intensively studied regarding maintainability and extensibility
resulting in widely accepted catalogs for OO design metrics [206]. Furthermore, the security
metrics we found, are practically important but still limited.

The Critical Design Proportion metric discussed by us in detail allows us to quantify a
structural security property. Until now, its application was mainly limited to UML class diagrams
explicitly containing security requirements. Using our approach, we can also calculate it at the
implementation level. However, this also reveals some of its limitations. Following the metric’s
specification, a software system’s design is better the smaller the portion of classes is that hold
security-critical elements. While this might hold at the design level, at more detailed levels, we
should avoid combining unrelated security elements, e.g., secret information. Whenever a part
of the implementations accesses a piece of secret information, it also gets access to the other
unrelated information although this access is not required. As a consequence, this could cause
serious security issues. For example, consider the administration of a hospital implicitly getting
access to detailed medical records at the creation of invoices.

However, considering the detailed information about accesses available at the implementa-
tion level, we could detect such unrelated secrets to which implicit access is given. To allow
the continuous improvement of a software system’s security design, in future works, it would
be beneficial to study approaches to leverage structural implementation-level information for
calculating security metrics on the design-model level. For example, a useful metric would be
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Figure 8.9: SecDFD for updating a user’s password

the average amount of classified assets communicated along with a dependency in a UML class
diagram. If there is a significant difference between the communicated classified assets and the
number of classified assets specified in the accessed class, this might be an indicator of a security
issue in the security design.

8.4 Security Compliance Checks between Models & Code

Using approaches like UMLsec or SecDFD, security experts specify security requirements such
as data processing contracts on the design-time models of the software system. These contracts
are then checked for consistency using the tool support of the approaches. If these checks reveal
inconsistencies or vulnerabilities, the design-time models have to be adapted until a secure state is
reached. However, for the final software system to be secure, it has to be compliant regarding the
structure as discussed before but also with these contracts specified on the design-time models.
To be more precise, the contracts have to be implemented as planned. Usually, such compliance
checks are performed manually. In this section, we show how the SecDFD contracts can be
verified in the implementation showing compliance.

8.4.1 Verification of SecDFD Contracts

In the used model-based security approaches, security contracts are specified on the design-time
models and are verified at design time. This procedure allows software architects and security
experts to build a secure design of the software system. However, for the final software system, it
is not enough to consider design-time security requirements at design-time but it has to be verified
that the implemented software system is compliant with these design-time security requirements.
In what follows, we show how the security compliance of the software system’s implementation
can be automatically checked regarding the data processing contracts and the cryptographic
contracts of the SecDFD approach.

SecDFD Data Processing Contracts

The forward and join contracts at the SecDFD level describe local data flows within a process
that have to be present in the implementation. To check if the specified contracts have been im-
plemented, we propose a two-step procedure. First, we extract the relevant asset-communicating
flows from the implementation. In what follows, we refer to the flows in the implementation as
i-ŕows. Second, we compare the implemented flows (i-flow) with the expected flows specified in
the SecDFD. To flows in the DFDs, we refer to as d-ŕows.

The main challenge in checking forward and join contracts is that one process can be realized
by multiple methods but also many methods do not belong to any process but interact with
multiple processes. Furthermore, an asset in the SecDFD can be realized by different types in
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Algorithm 1: Algorithm for extracting i-flows i for a given process p.
Input : Process p, Correspondence Model m
Output: i-Flows i

1 methods ← m.methods(p)
2 in ← inFlows(methods)
3 foreach ŕow ∈ in do

4 type ← communicatedType(ŕow)
5 if m.correspondence( type) = ∅ then

6 remove ŕow from in
7 end

8 end

9 out ← outFlows(methods)
10 foreach ŕow ∈ out do

11 type ← communicatedType(ŕow)
12 if m.correspondence( type) = ∅ then

13 remove ŕow from out
14 end

15 end

16 i ← {}
17 foreach target ∈ out do

18 sources ← reachableBwd(target, out)
19 if sources ̸= ∅ then

20 add (sources,target) to i
21 end

22 end

23 return i

the implementation. For example, the hashed old password (oldPasswordHashed) in Figure 8.9
is realized by instances of the Java classes String and byte[]. In addition, a single type in the
implementation can be used to create instances of different assets. This is especially a problem
for frequently used types like strings that can be used to represent nearly every asset as shown
in the previous chapters of this thesis.

In Algorithm 1, we show the pseudo-code for extracting implemented flows (i-flows) for a
given DFD process. We define an i-flow as a pair of the flow’s target and a set of the sources
of a flow in the implementation. The inputs to this algorithm are the DFD process for which
we want to extract the implemented flows and a correspondence model between the design-time
model and the source code. Following Chapter 6, such a correspondence model is automatically
created if the software system is developed using the GRaViTY approach. However, it is also
possible to work on a manually created correspondence model between the design-time model
and source code as introduced in Chapter 7.

First, we retrieve the methods implementing the DFD process from the correspondence model.
For each method, we search for the relevant incoming and outgoing flows in the implementation.
To this aim, we implement operations inFlows and outFlows which collect all flows into the
parameters of the methods and all incoming or outgoing return flows. Next, we filter the collected
flows in lines 3–8 and 10–14. For the forward and join check only the flows that can be used
to communicate assets from the SecDFD are relevant. This means that the type communicated
along a data flow has to be mapped to an asset in the correspondence model. Accordingly, we
filter out the flows which communicate unmapped types. At this point, it is not important which
assets can be communicated along with the single data flow.

After filtering, for every outgoing flow, we perform a backward search in line 18 and check
if we found reachable incoming flows (sources) in line 19. The pair of the found sources and
the target represents one i-flow that is added to the result set i. If exactly one incoming data
flow is propagated to the outgoing data flow, we found an implemented forward contract, and if
multiple incoming data flows are propagated to an outgoing data flow, we found an implemented
join contract. We only consider patterns with one outgoing flow. If there are SecDFD contracts
with multiple outgoing flows, these have to be split into multiple contracts. Finally, in line 23,
we return all found i-flows.
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Algorithm 2: Algorithm for checking the implemented flows i for a given process p
against the specified contracts.

Input : i-Flows i, Process p, Correspondence Model m
Output: Violations v

1 v ← {}
2 matches ← {}
3 foreach contract ∈ fwdJoinContracts(p) do

4 inAssets ← contract.inAssets()
5 foreach outAsset ∈ contract.outAssets() do

6 ŕows ← {}
7 foreach iŕow ∈ i do

8 type ← communicatedType(iŕow.trg())
9 if outAsset ∈ m.correspondence( type) and ∀ s ∈ iŕow.src() : (m.correspondence(

communicatedType( s)) ∩ inAssets) ̸= ∅ then

10 add iŕow to ŕows
11 end

12 end

13 if ŕows = ∅ then

14 add "Absence: Not implemented" to v
15 end

16 add (contract, outAsset)→ŕows to matches

17 end

18 end

19 solution ← findSolution(matches)
20 if solution = ∅ then

21 add "Divergence: No biuniqe assignment" to v
22 else

23 foreach ŕow ∈ (matches ∖ solution.ŕows()) do

24 add "Divergence: Not in DFD" to v
25 end

26 end

27 return v

After we extracted the i-flows, we compare them to the expectations from the SecDFD using
Algorithm 2. The input to this algorithm is the process, the correspondence model, and the
extracted i-flows. The output is a set of identified violations (absence and divergence).

Algorithm 2 is again based on two steps. First, we collect all possible matches between the
i-flows and the expected flows from the SecDFD contracts (d-flows). We consider the implemen-
tation of a contract to be convergent with the SecDFD if and only if there exists a bidirectional
one-to-one mapping between the d-flow of the contract and an i-flow. We call this property a
biunique mapping. But, the matches are usually not biunique because of the overlapping as-
set type mappings, therefore we have to reduce the initial set of matches to a set of biunique
mappings in a second step.

To collect the matches we iterate over every SecDFD contract and every outgoing asset of the
contract in lines 2 and 5. For each of these pairs we select i-flows if their possible outgoing assets
contain the expected asset and if for every incoming flow at least one possible asset is contained
in the set of expected incoming assets, see line 9 in Algorithm 2. If such an i-flow does not exist,
the contract is not implemented for this outgoing asset, and we detect a divergence (lines 13 and
14 in Algorithm 2).

After collecting all possible matches, we have to find a biunique solution within the created
mappings between the d-flows and the i-flows. This is implemented in the function findSolution.
The easiest implementation is to iteratively assign i-flows to d-flows and to check if a solution is
still possible. If so, we can assign the next i-flow to a d-flow, else, we have to backtrack. If we
cannot find such a solution, we report a violation as there is at least one unimplemented contract
and we detected an absence (lines 20 and 21). If we found a solution, all specified contracts have
been implemented and we found a convergence. However, all i-flows that are not part of the
solution are still reported as violations, as they are unspecified forwards or joins of assets and
represent a divergence.
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Table 8.1: Excerpt of well-known cryptographic signatures.

Library Signature Kind

OpenJDK – JSSE javax.crypto.Cipher.doFinal(byte[]):byte[] Encrypt, Decrypt

javax.crypto.Cipher.init(int, Key, AlgorithmPara-
meterSpec):Object

Encrypt, Decrypt

javax.crypto.SealedObject.SealedObject(Serial-
izable, Cipher)

Encrypt

javax.crypto.SealedObject.getObject(Cipher) Decrypt

Apache Commons2 org.apache.commons.codec.digest.DigestUtils
.sha256Hex(String):String

Hash

Cryptographic Contracts

The cryptographic contracts in the SecDFD describe at which location in the implementation
the use of encryption, decryption, or hash-function is expected. In what follows, we introduce
how we can check if the implementation meets this expectation defined at design time. When
our proposed check is executed, all encrypt and decrypt process contracts will be checked against
the implementation.

For each process with such a cryptographic contract, we collect all the mapped method imple-
mentations that call at least one method signature performing an encrypt or decrypt operation.
If at least one such method implementation exists, we consider that the process contract has been
implemented, and mark it as convergence. If no such method implementation has been mapped
to this process, we consider that the process’s SecDFD contract has not been implemented, and
mark this occurrence as an absence.

We provide a list of common methods that are called during cryptographic operations. Ta-
ble 8.1 aggregates an excerpt of these lists relevant to the iTrust example. We compiled this list
by inspecting the Java standard security library and packaged it together with the plugin. In ad-
dition, the user can add project-specific methods to this list (at run-time) via the user interface.
We remark that state-of-the-art static analysis tools, e.g., SonarQube1, maintain similar rules for
checking implemented encryption logic. However, these tools are restricted to locally accessible
information in their analysis. In contrast to this, using our approach users can automatically
verify their expectations regarding the planned security by leveraging the correspondence model
for transferring expectations into an analysis on the implementation level.

8.4.2 Tool Support for the Verification of Contract Implementations

The tool support for the verification of implemented SecDFD contracts is implemented as an
Eclipse plugin. Figure 8.10 shows the architecture of the SecDFD contract check implementation.

The general management and execution of checks are implemented in a ContractVerifica-

tion component. The component specifies an interface ICheck at which SecDFD compliance
checks can be registered. This interface allows the integration of additional SecDFD compliance
checks. For executing compliance checks, this component accesses the SecDFD and the Program
Model and provides access to these for all registered checks.

This main component (ContractVerification) providing the compliance checks is separated
into two sub-components. One for the verification of the forward and join contracts (Process-
ingContracts) and one for the verification of the encrypt and decrypt contracts (CryptoCon-
tracts). In both sub-components, we implemented the checks as introduced in Section 8.4. For
this purpose, both check components implement the external ICheck interface of the Contract-

Verification component.
Figure 8.11 shows the integration of the contract verification in the Eclipse IDE as an exten-

sion of the semi-automated mapping implementation presented in Section 7.2.3. The contract
verification can be executed by clicking the Check process contracts after creating a corre-
spondence model between a SecDFD and its implementation. The information marker on the

1https://www.sonarqube.org

https://www.sonarqube.org
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Figure 8.10: Component diagram showing the implementation of the SecDFD
contract verification.

Figure 8.11: Screenshot of the static security compliance checks.
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SecDFD in the center of the figure shows that the Forward contract in line 87 has been found in
the implementation and is implemented as expected accordingly. When no violations are shown,
the implementation can be considered compliant with the specified contracts.

8.4.3 Evaluation of the Contract Verification

In this section, we evaluate if the proposed contract checks (Section 8.4) can effectively detect
convergence, absence, and divergence between the planned security requirements and the imple-
mented security mechanisms. We focus on the effectiveness of the SecDFD contract verification
to answer the following objective.

O-Effectiveness: How effective is the proposed approach in the verification of SecDFD contracts
specified on data flow diagrams?

Setup. It is important to evaluate if the proposed checks can effectively be used in the context
of realistic projects. To this aim, we have used open source Java projects, as opposed to illus-
trative projects. Further, as we are interested in the effectiveness of the proposed compliance
checks, we execute the evaluation for all process contracts, encrypt, decrypt, forward, and join.
We evaluate the approach with perfectly compliant SecDFDs (i.e., verification results only include
convergences, and there are no absence or divergence violations) and with SecDFDs with injected
process contracts. In case of the fully compliant SecDFDs, all the detected compliance violations
are false positives (FPs). Injecting the process contracts allows us to measure expected compli-
ance violations (e.g., an absence of a join contract), which we mark as true positives (TPs). If the
expected compliance violation is not found (according to the injected contract), we mark it as a
false negative (FN). Finally, if we find unexpected compliance violations we mark them as false
positives (FPs). As a term of measure, we adopt the well-understood precision (𝑇𝑃/(𝑇𝑃 +𝐹𝑃 ))
and recall (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) of detected compliance violations.

Execution. Two projects are used as subjects for this evaluation. The first subject is the
iTrust project, which is used as the running example in this thesis and introduced in detail in
Chapter 2. The second subject is Eclipse Secure Storage that provides the capability to store
and read sensitive data to other Eclipse plugins. Eclipse Secure Storage is introduced in detail as
a second case study for the GRaViTY approach in Section 15.2. For both projects, we created
based on the documentation and implementation of the projects two SecDFDs each, a total
of four SecDFDs. As the created SecDFDs (all four) have been reverse-engineered from the
implementations, these are perfectly compliant and are contained in the repository associated
with this thesis. An example of such a SecDFD for iTrust is shown in Figure 8.9. An example of
a SecDFD for Eclipse Secure Storage is provided as part of a second case study in Chapter 15.

First, to verify the initially security-compliant state, we applied the contract verification to
the two projects. We expected to detect no divergences or absences between the SecDFD and
the implementation.

Afterward, we injected violations into the software systems and checked if these are detected.
The violations are injected by adding random contracts to the SecDFDs that are not imple-
mented. After every injection, we executed the contract verification and checked if the expected
violation has been detected, if additional false alarms have been raised, or if expected conver-
gences are not detected any longer. We generated injections of all contract types (encrypt,
decrypt, forward, and join). Regardless of the contract type, we injected all possible contracts
that have not been specified on the initial SecDFD.

New encrypt and decrypt contracts can be injected independently of each other. An encrypt
contract can be injected to every process that has no encrypt contract in the initial SecDFD and
a decrypt contract to every process that has no decrypt contract. Accordingly, it can happen
that we injected a decrypt contract to a process that has already an encrypt contract and the
other way around.

For the injection of forward and join contracts, we injected for every process of a SecDFD
all possible contracts that have not been already specified. To do so, we calculated all possible
combinations with one outgoing flow. To calculate the combinations we considered all incoming
and outgoing assets. For instance, for a process with two incoming and two outgoing assets (and
no specified forward, or join contract), we injected 6 possible contracts. Every incoming asset can
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Table 8.2: Results of evaluating the cryptographic contracts verification.

Eclipse iTrust

1 2 1 2 Overall

TPs 12 48 59 70 189
FPs 0 0 0 0 0
FNs 0 0 11 0 11

precision 100% 100% 100% 100% 100%
recall 100% 100% 84.28% 100% 94.5%

Table 8.3: Results of evaluating the processing contracts verification.

Eclipse iTrust

1 2 1 2 Overall

TPs 1 29 55 67 152
FPs 0 28 1 10 39
FNs 14 29 23 14 80

precision 100% 50.88% 98.21% 87.01% 79.58%
recall 6.67% 50% 70.51% 82.71% 65.52%

be forwarded to every outgoing asset (4 forward contracts) and the pair of incoming assets can
be joined with both outgoing assets as target (2 join contracts). If a combination is equivalent
to an existing contract, it is omitted.

Results. Tables 8.2 and 8.3 depict the results of the contract verification based on the injected
contracts. We show the results per SecDFD and overall. The results of the evaluation are
in favor of using our approach to execute security compliance checks between the design and
implementation of a software system. For the execution of the verification on the fully compliant
SecDFDs, we achieved 100% precision and recall. Since the effectiveness of the proposed contracts
must also be studied in the context of imperfectly mapped SecDFDs. In what follows, we discuss
the effectiveness of the approach in detecting absences of specified contracts.

For evaluating the verification of encrypt and decrypt contracts, we injected 200 additional
encrypt and decrypt contracts into the SecDFDs. Most injected contracts (except 11) were
correctly detected as absent. The 11 undetected absent contracts belong to the same SecDFD
of the iTrust project. After investigating them, we noticed that all of them have been injected
into processes that already have a encrypt or decrypt contract. The reason for this defect is
that in the list of well-known cryptographic operations the project-specific specified signature for
encryption is also specified for decryption. As iTrust uses a crypto-function that can be used for
encryption and decryption, this is a correct classification. In this function, a parameter specifies
whether encryption or decryption should be performed. Since we only check for at least one
method call for encrypt/decrypt, we can not detect an absence in this particular case.

To evaluate the forward and join checks we injected 232 contracts into the SecDFDs. In
contrast to the verification of cryptographic contracts, the results presented in Table 8.3 paint a
more diverse picture. On the one hand, the processing contracts verification reaches a very good
precision (98.21% and 87.01%) and recall (70.51% and 82.71%) on the iTrust project. On the
other, the verification performs below par on the Eclipse Secure Storage project. In addition,
there is a huge difference between the two SecDFDs on the Eclipse Secure Storage.

In particular, the verification showed a poor performance for the SecDFD called Eclipse 1.
Two reasons handicap the verification:

First, external entities are not part of the software system and can not be mapped to elements
from the software system. For example, the external entity registered user in Figure 8.9
represents an arbitrary iTrust user that is accessing the software system from her internet browser
that is not part of the software deployed on the iTrust server. Similarly, the data can be accessed
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over a local Java API that allows plugins to access data. In such cases we attempt at guessing
possible incoming flows by considering, e.g., every parameter of the methods mapped to a process
as a possible source but also all returns of called methods that have not been mapped to any
process. For instance, the change password process (iTrust 1) is heavily interacting with an
external entity and the processes reset password and authenticate interact with a data store
which results in very many guesses weakening the results.

Second, despite the reduction when extracting flows, described in Section 8.4, the overlapping
asset types caused both FPs and FNs. In the example, this communication of change password

is implemented by mainly using assets whose correspondences are overlapping (mainly strings).
In general, representing sensitive objects with string values is prevalent in Eclipse Secure Storage.
This also affected the performance of the processing contracts verification on the second SecDFD
(Eclipse 2). Yet, the verification still achieves a recall and precision of 50%. This happened
because the asset types of injected contracts overlapped with the asset types of the implemented
contracts. For instance, consider two existing and fulfilled forwards of assets that are both
mapped to the type String. In Figure 8.9 for instance, these are the forward of ID on the
change password process and the forward of the newPassword and oldPassword. In addition
to these expected forwards, there are some additional uses of strings that are not representing
assets, e.g., a parameter representing a second submission of the new password change password
process. As discussed in Chapter 2, this second submission of the new password is used to avoid
typing errors by comparing the two versions of the new password. Now we inject a join of ID and
newPassword to newPassword. As the default value is a guessed flow, we could easily ignore it
before this injection but now it exactly contributes to the injected join contract and we have to
report this contact as convergence. However, we cannot any longer report the forward of data

as convergence as the flow pattern is now mapped to the injected join contract. Accordingly, we
now report a false divergence. In this case, at least the user would have been warned about a
violation but the information about the assets was not entirely correct.

As the iTrust project does not have as many overlapping asset-type correspondences and
the SecDFDs have fewer external entities, the results are much better for this subject than for
the Eclipse Secure Storage. Again, the missed violations are mainly due to overlapping asset
correspondences as shown in the previous explanation.

Overall, the contract verification is fairly precise (80%) and reaches a recall of more than
65%. Generally, the presented contract verification works and can bridge the huge gap between
early design models and concrete implementations. Though, it suffers from overlapping corre-
spondences. Also, missing API specifications of the software system, i.e., the issue of mapping
external entities, harms the performance of the contract verification.

8.4.4 Threats to Validity

In this section, we discuss internal and external threats to the execution of our experiments as
well as threats to their construction that might threaten the validity of our evaluation.

External Validity

The main threat to external validity is our selection of samples, based on a limited number of
open-source projects, partially originating from a teaching context. Regarding the validity of
the studies conducted to evaluate the security compliance checks, the open source projects do
not contain well-known security violations, thus we consider them secure in this respect. The
rationale for our selection was the manual effort that was required for creating the ground truth
of our technique, a full correspondence model between high-level DFD elements and low-level
implementation elements. However, as a result, the generalization of the results to larger projects
in other domains is limited. To mitigate this threat, the considered projects were chosen to be
representative of realistic projects by providing good documentation, including architectural
information, such as, wikis, use cases, scenarios, requirements, state charts, and the like. The
available documentation enabled building good design models, close to the intended architecture.
Further, we partly mitigate this threat by experimenting with contract injections in evaluation.
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Internal Validity

Regarding internal validity, the main threat of our evaluation is researcher bias. In absence
of pre-existing ground truths and design models, the ground truth and design models for our
evaluation were created manually by the authors, possibly introducing a risk of creating a biased
result. To mitigate this threat, the ground truths and the design-level models were carefully
discussed between all authors involved in the publication [216]. The created models and ground
truths are of similar size and complexity and are available online3.

Construct Validity

Concerning construct validity, we consider the threat of misinterpreting compliance violations
in the context of design-level models, implementation-level models, and violations detected by
static code analysis. However, to the best of our knowledge, our interpretations are in line with
the existing literature [92].

8.4.5 Conclusion on the SecDFD Contract Verification

We introduced a novel approach for tackling the problem of automating the code-level verification
of planned security mechanisms. In particular, we have developed a solution with tool support for
executing security compliance checks between an abstract design model and its implementation
(in Java). Once defined, the correspondence model is leveraged for an automated security analysis
of the implementation against the design. Two types of security compliance checks are executed:
a rule-based check for a set of cryptographic operations, and a local data flow check for data
processing contracts specified in the model. The results of the compliance checks (convergence,
absence, and divergence) are lifted to the attention of the user via the user interface of our tool.

Our approach was evaluated with two studies on open source Java projects, focused on
assessing the performance from different angles. The rule-based security compliance checks
are very precise (100%) and rarely overlook implemented cryptographic operations (recall is
94.5%). In addition, the local data flow checks are fairly precise (79.6%) but may overlook
some implemented flows (recall is 65.6%), due to the large gap between the design-time SecDFD
models and the implementation.

Regarding future improvements, we note that extending the SecDFD with strongly typed
assets could improve the performance of the security compliance checks. The introduction of
strongly typed SecDFD assets could allow a more precise correspondence model to the imple-
mentation, which would make the local data flow checks cleaner. Such strongly typed assets
are, e.g., given in detailed UML activity diagrams that support the typing of dataflows with
types defined in class diagrams. In addition, the missing correspondences to the external entities
could be better approximated by relying on parsed API specifications (e.g, JavaDoc). Finally,
the evaluation of the security checks could be improved by including more open source projects,
especially projects with known security violations.

8.5 Optimized Data Flow Analysis

Secure information flow analysis dates back to the 70s and has been heavily studied ever since [217,
218, 219]. In principle, the idea is to perform a static analysis of the program to show that if
executed, a program does not leak confidential information. Data flow analysis computes the
data dependencies, i.e., which variables are dependent, to determine how data propagates in a
program. Data flow analyzers take as input an abstracted representation of the code, e.g., an
abstract syntax tree or a control flow graph, to perform the analysis. Taint analysis is a kind of
information flow analysis where data objects are tainted at the source and tracked to the sink
using data flow analysis [219]. It is one of the most used data flow analyses and has even been
integrated into some programming languages, e.g., perlsec [220] in Perl. Source methods are
characterized by reading data from a system resource, e.g., a remote database or user input, and
returning them to the caller. Contrarily, sink methods write to system resources. An alarm is
raised if a tainted object (i.e., source) flows into a forbidden location (i.e., sink) in the program.

3Contract verification implementation and evaluation data: https://github.com/SvenPeldszus/

GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
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8.5.1 Optimizing Data Flow Analysis based on Security Requirements

To perform a data flow analysis, a developer needs to identify the sources and sinks of secret
data in the implementation. More importantly, to perform a meaningful and precise data flow
analysis, the sources and sinks must be identified correctly. For instance, we have found the
standard substring method in Java (java.lang. String.substring(int, int):String) as
one of the sink method signatures in an existing list of identified sinks4. This will result in
many false alarms raised by the analyzer since it seems unlikely that data can leave the software
system through this method and it is a very common operation over strings in Java. Dually,
overlooking an important source may result in overlooking true leaks. Though some sources and
sinks can be extracted from library APIs [221], finding project-specific sources still remains a
challenge. In addition, many data flow analyzers work with a flat security policy. Specifically,
they raise an alarm if there is an access path between any of the source methods and any of the
sink methods. But, certain tainted data might be expected to flow to some sinks, e.g., writing
a hashed password to iTrust’s database, but not others. If all the tainted objects are treated
equally, the analyzer raises false alarms. In response to this challenge, we aim to automatically
extract project-specific sources and sinks for each SecDFD asset.

Project-specific sources

The SecDFD modeling approach requires the user to specify confidential assets, thus their source
element (in the model) can easily be determined. There are three possible types of source
elements: an external entity, a data store, or a process. If the asset source is an external
entity and it is mapped to method definitions, their signatures are collected as sources. But,
if no correspondence with the external entity exists, e.g., for the entity registered user from
Figure 8.9, the signatures of the mapped method definitions of the processes reading from that
entity are collected instead. If the asset source is a data store, it can be mapped to methods or
types. First, the signatures of method definitions mapped to the data store (if any) are collected.
Second, if the data store is mapped to a type, e.g., a class, the signatures of method definitions
defined by this class are also collected, but only if the return type matches the asset type. Finally,
an asset source can be a process element, e.g., a random number generator. If there is no process
contract with this particular asset on the output, then the signatures of the method definitions
mapped to the process are collected. But, the asset may originate in the process as a result of
a transformation, e.g., a join of two assets. In this case, the assets on the contract inputs are
traced backward reaching either an external entity, a data store, or a process with no contracts
impacting the traced asset. The signatures of the method definitions mapped to the traced
element are collected as sources.

Allowed sinks

We collect the sink method signatures from [221] (excluding methods of Android-specific pack-
ages) and exclude the allowed sinks. The allowed sinks are maintained for each confidential
asset. These are method implementations mapped to SecDFD elements where the confidential
asset exits the software system, i.e., external entities and data stores. For example, the secret
flowing into the data store db in Figure 8.9 is expected to flow there. Therefore, we consider the
data store db as an allowed sink for this specific asset.

8.5.2 Tool Support for Optimized Data Flow Analysis

Figure 8.12 shows a component diagram of the implementation of the optimized data flow anal-
ysis. We implemented the optimized data flow analysis in a component DataFlowAnalysis as
an extension to the SecDFD contract checks presented in Section 8.4. For this reason, the new
DataFlowAnalysis component is registered at the ICheck interface of the ContractVerification
component. This allows an execution of an optimized data flow analysis when the implementa-
tion is checked for compliance with a SecDFD. In this work, we perform the data flow analysis

4SuSi repository: https://github.com/secure-software-engineering/SuSi

https://github.com/secure-software-engineering/SuSi
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Figure 8.12: Component diagram for the optimized data ŕow analysis.

using FlowDroid [32], a state-of-the-art taint analyzer for Android applications, but also appli-
cable to Java programs. The 2.7.1 release of FlowDroid was obtained from its release site5 and
is imported as a library in our plugin.

FlowDroid raises an alarm if and only if an object flows from a predefined list of source
methods, i.e., these objects are tainted, into sink methods, i.e., they violate the security policy.
The sources and sinks must be identified and are passed as parameters to the analyzer. To
simplify the analysis, FlowDroid relies on the capabilities of the Soot compiler framework [222]
which converts Java bytecode into the Jimple [223] intermediate code representation. This makes
FlowDroid’s analysis precise as it is flow-sensitive, i.e., the call graph is aware of the order of
statements, and context-sensitive, i.e., the call graph is enriched with the context of the callees. In
addition, the Jimple representation can handle Java reflection, but only for reflective calls where
the types of all referenced classes are known. The analysis in FlowDroid is also object-sensitive,
meaning that the call graph distinguishes method invocations on different object instances since
it uses access paths as taint abstractions. In general, taint analyzers consider only explicit flows
for performance reasons [224], but FlowDroid also supports tracking implicit flows and shows
good results on benchmarks (86% precision and 93% recall on DroidBench [32]). We refer the
interested reader to [225] for more details.

The DataFlowAnalysis component of our implementation executes FlowDroid over its Java
API. Following Section 8.5.1, we execute FlowDroid for every asset in the SecDFD taking its set
of allowed sinks and possible sources into account.

8.5.3 Evaluation of the Optimized Data Flow Analysis

The purpose of this study is to evaluate whether using our approach helps to reduce the number
of false alarms raised by an existing data flow analyzer. In this section, we present the design,
execution, and results of this study for answering the following objective.

O-Effectiveness: To what extent can the mapped design model (with our approach) be used
to reduce the number of false alarms raised by a data flow analyzer?

Setup. We investigate the performance of analysis with FlowDroid [32] initialized with project-
specific sources and sinks. To this aim, we built three configurations of sources and sinks. Apart
from the first configuration (Plain), we execute the analyzer for each SecDFD asset separately.
This experiment was conducted with the same two projects as the evaluation of the contract
checks in Section 8.4.3, namely, Eclipse Secure Storage [201] and iTrust [46]. To the best of our
knowledge, both projects are free of data flow leaks. Therefore, all the reported leaks by the
analyzer are by default labeled as false alarms (FPs). In what follows, we introduce the three
configurations of sources and sinks handed to FlowDroid in detail.

Plain. We execute the analyzer with the list of source signatures shipped with FlowDroid [221]
(herein Default sources) and sink signatures extracted from [221] as described in Sec-
tion 8.5.1 (herein Default sinks). Apart from Java method signatures, this list contains

5FlowDroid release site: https://github.com/secure-software-engineering/FlowDroid/releases

https://github.com/secure-software-engineering/FlowDroid/releases
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signatures of methods specific to Android source packages. We removed such signatures to
avoid unnecessarily searching for them with FlowDroid. Note, that this reduced the list of
source signatures from 18,077 to 1,229 and sink signatures from 8,315 to 1,310. As a result
of this filtering, the Android SQL database API (SQLite) was also removed. To analyze
Java projects, we manually added signatures from the Java SQL API to the above list of
sources and sinks.

Partly Opt. We execute the analyzer (for each confidential asset) with project-specific source
signatures (herein SecDFD sources) and Default sinks. The SecDFD sources are extracted
per SecDFD asset, as described in Section 8.5.1. Note that the SecDFD sources are ex-
tracted independently, and therefore may not include any of the Default sources.

Fully Opt. We execute the analyzer (for each confidential asset) with SecDFD sources and
without allowed sink signatures (herein SecDFD sinks). The list of allowed sink signatures
is extracted per SecDFD asset, as described in Section 8.5.1. The SecDFD sinks are
obtained by removing the allowed sink signatures from the Default sinks.

The results are compared concerning the number of FPs, as no actual leaks (TPs) exist in
the analyzed projects. In addition, we measure the number of extracted project-specific source
signatures and the number of removed sink signatures. A false alarm (FP) is a detected leak
with a unique pair of source and sink method signatures, regardless of the access path where
the leak is detected. The rationale for counting unique signature pairs is that comparing access
paths would be computationally expensive and not useful for this study. For instance, consider
an implementation of a function where the number of recursive calls depends on a conditional.
In this case, at least two access paths (when the conditional evaluates to true and false) are
detected. But the DFD does not specify such a level of detail, thus we can not distinguish between
the access paths of the detected data leaks. The false alarms are aggregated per SecDFD, to
enable comparison with the Plain configuration.

As we execute the analysis for each SecDFD asset, we measure the project-specific sources
and sinks in the same manner. Specifically, to measure the number of project-specific sources
we count each discovered source signature per SecDFD asset. Similarly, to observe the number
of times we can remove an allowed sink, we count each signature that has been removed for a
unique asset.

1 Infoflow result = new Infoflow("", false , null);

2 result.setSootConfig ((options , conf) -> {

3 conf.setCallgraphAlgorithm(CallgraphAlgorithm.AutomaticSelection);

4 conf.setImplicitFlowMode(ImplicitFlowMode.AllImplicitFlows);

5 conf.setAliasingAlgorithm(AliasingAlgorithm.FlowSensitive);

6 conf.setStopAfterFirstKFlows (100);

7 });

8 result.setTaintWrapper(new EasyTaintWrapper(Collections.emptyMap ()));

9 return result;

Listing 8.1: Configuration of FlowDroid used in this study.

Execution. Both projects used in this study include two SecDFDs, representing two different
scenarios. Listing 8.1 shows how we configured FlowDroid for all our executions. This configu-
ration was set up to achieve the best performance and most conservative analysis, following the
literature [225]. We configure FlowDroid to use the default call-graph construction algorithm
(SPARK). In addition, we have enabled implicit flow tracking and flow-sensitive aliasing. Note
that, without tracking implicit flows, Fully Opt. produces no false alarms, while Plain still
reports many. Finally, we limit the static analysis to the projects, excluding third-party libraries
(cf. line 8 in Listing 8.1), and stop the analyzer after identifying 100 leaks per run. We have
implemented and executed the experiments using the JUnit Plugin Test framework with a limit
of 6 GB of memory consumption (for each execution of the analyzer). The amount of allowed
memory and the maximum number of identified leaks were determined empirically. We have
executed random parts of the experiment with different configurations repeatedly and didn’t get
different results.
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Figure 8.13: False alarms (FPs) raised by the analyzer after three configura-
tions of sources and sinks per SecDFD (Eclipse Secure Storage on Top, iTrust

on Bottom)

Table 8.4: Average false alarm reduction for the different configurations (ag-
gregated per project).

Configuration FPs on Eclipse FPs on iTrust Overall

Plain 15.65 2.7 9.18
Partly Opt. 9.45 (↓ 60%) 13.1 (↑ 485%) 11.28
Fully Opt. 5.95 (↓ 37%) 1.9 (↓ 85%) 3.93

Total (↓ 62%) (↓ 30%) (↓ 57%)
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Results. Figure 8.13 shows the false alarms raised by the analyzer after three configurations
per SecDFD model as box plots. The average number of false alarms is aggregated per project
in Table 8.4 and the change in the number of false alarms is presented. The main takeaway of
the evaluation is that using our approach we were able to

a) extract project-specific sources of secret data and

b) reduce the number of false alarms (up to 62%) raised by the data flow analyzer.

In what follows, first, we discuss the reduction with only project-specific sources. Second, we
discuss the reduction with removing allowed sinks.

Our measurements from the Partly Opt. configuration show that deriving project-specific
sources from the SecDFD is possible and can reduce the number of FPs. For instance, in the
case of Eclipse Secure Storage, we achieved an average 60% reduction of false alarms (Table
8.4). However, adding project-specific sources can also lead to a rise in false alarms (as observed
on iTrust). The number of project-specific sources is realistic considering the project size (11
for Secure Storage and 10 for iTrust). In addition, the project-specific source methods are in
fact accessing sensitive resources, e.g., the java.sql.PreparedStatement.executeQuery() is
called when iTrust authenticates the confidential credentials entered by a user. But, the derived
sources depend heavily on the correspondences. Since iTrust is implemented with the dynamic
Java Server Pages, FlowDroid can not analyze the entire behavior of the program. Therefore,
we are only able to reduce the number of FPs after removing the allowed sinks.

We found that the number of FPs can be further reduced by removing allowed sinks from the
list of sinks passed to the analyzer (Fully Opt. configuration). We have been able to remove 3
sinks (all from java.lang package) for Eclipse Secure Storage and 36 sinks (all from java.sql

package) for the iTrust project. These sinks were included in the previous configurations but were
derived in this configuration as allowed for certain SecDFD assets. In particular, we observed a
further 37% average reduction of FPs for the Eclipse Secure Storage project, when comparing the
analysis results to the previous configuration (Partly Opt.). Compared to the first configuration
(Plain), considering only project-specific sources and removing allowed sinks reduced the number
of false alarms on average by 62%. As project-specific sources were hard to find for the iTrust
project, we compare the analysis results to the initial configuration (Plain). Removing the
allowed sinks in iTrust reduced the number of FPs on average by 30%.

8.5.4 Threats to Validity

In this section, we discuss threats to the validity of our experiments. We identified threats
regarding three different categories.

External Validity

The main threat to external validity is our selection of samples, based on a limited number of
open-source projects, partially originating from a teaching context. Regarding the validity of the
studies conducted to evaluate the security compliance checks, the open source projects do not
contain well-known data flow leaks, thus we consider them secure in this respect. The rationale
for our selection was the manual effort that was required for creating the ground truth of our
technique, a full correspondence model between high-level DFD elements and low-level program
elements. However, as a result, the generalizability of the results to larger projects in other
domains is limited. To mitigate this threat, the considered projects were chosen to be repre-
sentative of realistic projects by providing good documentation. The available documentation
enabled building good design models, close to the intended architecture.

Internal Validity

Regarding internal validity, the main threat of our evaluation is researcher bias. In absence
of pre-existing design models, the design models for our evaluation were created manually by
the authors, possibly introducing a risk of creating a biased result. To mitigate this threat, the
design-level models were carefully discussed between all authors involved in the publication [216].
The created models are of similar size and complexity and are available online6.

6Optimized data ŕow analysis implementation and evaluation data: https://github.com/SvenPeldszus/

GRaViTY-SecDFD-Mapping/

https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
https://github.com/SvenPeldszus/GRaViTY-SecDFD-Mapping/
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Construct Validity

With respect to construct validity, we consider the threat of misinterpreting compliance violations
in the context of design-level models, implementation-level models, and violations detected by
static data-flow analysis. Also, there could be issues with the selected initial source and sink sets
for the taint analysis. However, to the best of our knowledge, our interpretations are in line with
the existing literature [92].

8.5.5 Conclusion on the Optimized Data Flow Analysis

Once defined, the correspondence model is leveraged for an automated secure data-flow analysis
of the implementation against the design-time data-flow specifications. The mapped design is
leveraged to initialize and execute a state-of-the-art data flow analyzer over the entire Java
project. The results of the data-flow compliance checks are lifted to the attention of the user via
the user interface of our tool.

Our approach was evaluated on two open-source Java projects, focused on assessing the
performance from different angles. Our approach enables a project-specific data flow analysis
with up to 62% fewer false alarms.

Regarding future improvements, we note that as for local data-flow analysis strongly typed
SecDFD assets could be mapped to the implementation more precisely, which would make the
initialization of the data-flow checks cleaner and more precise. In addition, the missing cor-
respondences to the external entities could be better approximated by relying on parsed API
specifications (e.g, JavaDoc) for improved identification of sources and sinks. Finally, the eval-
uation of the optimized data-flow analysis could be improved by including more open source
projects, especially projects with well-known data leaks.

8.6 Specification of Incremental Security Checks

The presented solutions allow to effectively check for the security compliance between security
requirements specified in design-time models and their implementation by leveraging the cor-
respondence model between the design-time models and the implementation. However, these
checks are hard-coded, lack a formal foundation, and are not trivial to understand. In this sec-
tion, we introduce security violation patterns that allow the specification of security violations
using the notation of graph transformation and their detection (RQ3.2). Also, the security viola-
tion patterns are designed to allow an incremental application to the changed parts of a software
system (RQ4.3). This allows efficient security compliance checks after changes, as it allows us to
only check the changed parts.

8.6.1 Background on Henshin Model Transformations

Using a graph-based representation of the program model, correspondence model, and UML
model, we consider the detection of security violations as in-place graph transformation. We
use the transformation language Henshin [226] to specify security violation patterns of interest.
Henshin is based on graph transformation concepts, which enables us to specify security violation
patterns as declarative graph transformation rules. A Henshin rule 𝑟 : 𝐿 → 𝑅,𝑁𝐴𝐶 consists
of two graphs 𝐿 and 𝑅 referred to as left-hand side and right-hand side, respectively, and a set
of negative application conditions on 𝐿. The notation 𝐿 → 𝑅 symbolizes a partial mapping
which, by adopting notations from set theory loosely, induces the graph patterns to be found
and preserved (𝐿∩𝑅), to be deleted (𝐿 \𝑅), to be created (𝑅 \𝐿) by a rule, and those that are
forbidden (𝑁𝐴𝐶). In the visual Henshin transformation language, the left- and right-hand side
of a rule are integrated into a “unified graph”, the graph patterns 𝐿∩𝑅, 𝐿 \𝑅 , 𝑅 \𝐿, and 𝑁𝐴𝐶
are marked by stereotypes «preserve», «delete», «create», and «forbid», respectively.

8.6.2 Incremental Security Violation Patterns

During development but also maintenance, software systems are continuously subject to changes.
While GRaViTY allows the propagation of structural changes into the implementation [129, 152],
we need a verification of the adapted design-time security requirements on the implementation



8.6. Specification of Incremental Security Checks 143

«preserve»
supplierCritical:critical

«preserve»
supplier:Classifier

«preserve»
member:Feature

«preserve»
:Type2TAbstractType

«preserve»
:Type2TAbstractType

«preserve»
:Feature2TMember

«preserve»
client:Classifier

«preserve»
:TAbstractType

«preserve»
:TAbstractType

«preserve»
:TAccess

«preserve»
:TMember

«preserve»
:TMember

«forbid»
clientCritical:critical

target

«preserve»

source

«preserve»

source

«preserve»

target

«preserve»

base_Classifier «preserve»

target

«preserve»

source

«preserve»

tTarget «preserve»

defines «preserve»

base_Classifier «forbid»

tAccessing «preserve»

member «preserve» defines «preserve»

Condition Check if client specified member as critical

clientCritical.secrecy.contains(SignatureHelper.getSignature(member))

Condition Check if supplier specifies member as critical

supplierCritical.secrecy.contains(SignatureHelper.getSignature(member))

1

2

3 4

UML Model Program ModelCorrespondence Model

Rule SecureDependency (in supplierCritical:critical, var clientCritical:critical, var member:Feature)

Figure 8.14: Rule-based specification of a security violation pattern for de-
tecting violated design-time security requirements in the implementation.

level. As a first idea, we could re-execute all implementation-level security checks. However, this
comes with two drawbacks. First, even when these have been adapted to reflect the current secu-
rity context knowledge, e.g., using security maintenance rules [204], these implementation-level
security checks are usually disconnected from the security requirements specified on architectural
models of the software system. Second, a full compliance check is usually very time-consuming.
For this reason, following RQ4.3, we need an efficient verification of the compliance of the software
system’s implementation with the architecture in case of changes.

One example of such a UMLsec security specification is the Secure Dependency check [5]. As
introduced in Section 3.6.1, secure dependency aims to structure the application into different
security levels for critical class features. Access to features on such a security level is only allowed
by entities that obey these security levels according to their security specifications.

To show the compliance of a software system’s implementation with the security levels speci-
fied at design time, we have to prove that the implementation does not contain violating accesses
to elements representing critical members in the system model. This can be done by either a
blacklist or whitelist approach, meaning to specify all violating access patterns or all allowed
access patterns. As we want to show violations, we are going for the blacklist approach and the
specification of violating access patterns. If we execute such a compliance check as a reaction to
changes on the model level or the implementation, an entire compliance check is not necessary
but it is sufficient to only check all changed parts.

For compliance checks, we leverage the information stored in the correspondence model be-
tween the UML system model and the program model. For every class in the system model, we
have one or more corresponding classes in the implementation. The same holds for the oper-
ations and attributes of classes in the system model. These are corresponding to one or more
methods or fields in the implementation. For example, in Java, it is a common practice to
encapsulate a property from the system model by the use of getter and setter methods at the
implementation level.
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In Figure 8.14, we show a rule for detecting a violation of the system model-level secure
dependency specification on the implementation level for the security level of secrecy. We speci-
fied this violation pattern using Henshin transformation rules [226]. The rule shows on the left
the elements from the UML models, in the center the correspondences from the correspondence
model, and on the right the elements from the program model.

On the UML model, the rule matches in part 1 of the rule every feature (operations or
properties) contained in a class supplier with the stereotype critical, that contains the signature
of the feature in the list of signatures on the level of secrecy. Thereby, the containment is
expressed in the condition on top of the rule. Also on the UML model, in part 2 , the rule
matches a client class that does not specify the feature’s signature in a critical stereotype
and which is connected with the other class over the implementation. This connection to the
implementation is expressed in part 3 showing the correspondences between the matches in
the UML model and the match in the program model that have to be present. In part 4 of
the rule, the access from a member of a type in the implementation corresponding with the
class client to a member corresponding with the feature of the class supplier is matched. If
this rule matches, we found a security violation in the implementation regarding the model-level
security specification.

If we have a closer look at the name of the rule, we can see that this is followed by parameters
of the format kind name:type. These parameters make the rule elements with the same name
accessible to the conditions of the rule and the caller of the rule. The parameter kinds in the
rule are var and in. While var parameters only serve as internal variables, parameters of
kind in can be bound to an element when calling the rule. For the shown rule, the parameter
supplierCritical may be bound by the rule’s caller. This allows us to bind this parameter to
the «critical» stereotypes that have been modified as part of a security maintenance step and
to restrict the compliance check only to the changed security requirements. Similarly, we can bind
other nodes for incremental security verification, e.g., to a changed class in the implementation
or UML model.

To answer RQ3 of how to support developers in preserving a software systems security regard-
ing an efficient verification of a software system’s implementation compliance with the design-time
security requirements after changes, we introduced security violation patterns. Following RQ3.2,
the security violation patterns use algebraic graph transformation rules as a formal basis. As
shown in this section, using security violation patterns, we can specify security violations on the
implementation level concerning to security properties specified in design-time models. In case
of changes, a matching of these patterns can be initialized with the changed parts to restrict the
search space and only execute compliance checks on the changed parts.

8.6.3 Tool Support for Security Violation Patterns

As we specified security violation patterns using the Henhsin transformation language, these
can manually be executed using Henshin. Henshin provides a wizard, that provides a graphical
interface for executing Henshin rules on selected models. However, in our case the manual
execution of the security violation patterns is infeasible. For this reason, we make use of the
Java API of Henshin. Whenever any tracked artifact is changed, and a changed elements type
is compatible with one of the parameters of a security violation pattern, this element can be
assigned to the parameter and the security violation pattern be executed.

Figure 8.15 shows a component diagram of the implementation of security violation pat-
terns in GRaViTY. The security violation patterns are implemented in the component Security
Violation Patterns. The use of the Henshin API for matching the security violation pat-
terns is represented by the use of the ITransformation interface of the Henshin component.
For matching the security violation patterns, a program model (TypeGraph), UML model (UML
component), and the correspondence model between them (PM-UML Correspondence) are used.
To allow the manual execution of the security violation patterns, we integrated these into the
CARiSMA tool [227] and the Hulk design-flaw detection tool [20, 33].

CARiSMA provides check implementations for UMLsec, among others, for secure dependency.
All checks implement an ICheck interface and are centrally managed and executed through this
interface. To allow the extension of CARiSMA this interface is exported to the outside. As
security violation patterns aim at checking the compliance between UMLsec security requirements
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Figure 8.15: Component diagram of the security violation pattern implemen-
tation.

and the implementation, we implemented this interface to allow the execution of the security
compliance patterns from CARiSMA.

Hulk provides design-flaw detection on program models using the TypeGraph also used by
the security violation pattern implementation. For this reason, we also integrated the detection
of the security violation patterns into Hulk. For this purpose, Hulk specifies two interfaces.
First, the IFlaw interface allows specifying program model annotations that will be added to the
program model as part of a registered detection to specify the findings. Second, the IDetect

interface specifies the operations that have to be implemented to execute the security violation
pattern detection by Hulk.

8.6.4 Evaluation of Incremental Security Violation Patterns

In this section, we study if our solution as implemented in our prototype is feasible to solve the
identified problems on a real-world software system. We want to show that security violations
due to real-world security knowledge changes can be detected using our approach. Furthermore,
it has to be possible to execute the detection with a reasonable time after a change has occurred.
In summary, we consider feasibility regarding the following two objectives:

O1śFeasibility: The evaluation should show that the approach can be applied to an evolution
scenario on a real-world software system.

O2śPerformance: Our evaluation should show the benefit of incremental security violation
patterns in the verification of changes.

We evaluated security violation patterns regarding two objectives. First, we studied whether
security violation patterns are feasible for detection security violations on the implementation
level regarding security requirements specified in design-time models. Second, we studied the
run-time benefit of the incremental security compliance checks using security violation patterns.

O1śFeasibility

As an example to demonstrate the feasibility of our approach, we use a legal change, namely
the release of the EU General Data Protection Regulation (GDPR) in which the European
Parliament has adopted stricter regulations for the use of personal data [48]. For simplicity, in
the considered scenario, we assume that the protection of personal data has not strictly been
regulated by now and it is only regulated that medical records have to be treated as sensitive
information and require explicit protection against their disclosure. This protection should be
realized by assigning a security level to sensitive information and restricting access to this security
level. Technically, this can be done by applying UMLsec secure dependency.

Figure 8.16 shows an excerpt from the system model of the iTrust medical application [46]
with applied UMLsec secure dependency stereotypes. On the right, the users of the software
system are shown. These can be doctors or patients. For both, a hashed version of the password
and personal information like their home address is stored. On the left, we see different actions
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Figure 8.16: Excerpt from the design model of iTrust after adaptation to new
regulations by adding new security requirements.

that can be performed in the software system. These actions are realized as controls. One of
these controls is the DiagnosisControl that allows users, depending on their rights, to read or
edit medical diagnoses. To access this control, a user has to log in using the LoginControl.
To check if a user can log in and determine her rights, the LoginControl accesses the User

object captured as «call» dependency (shown on the bottom of the diagram). Thereby, the
LoginControl potentially has access to all information captured by the User class.

From a security perspective before the change of the regulation, only the password stored
in the User class is sensitive and access has to be limited, e.g., by restricting access to this
information to entities that are on a required security level. Accordingly, in Figure 8.16, we put
the information stored in the property password on the level of secrecy by adding the signature
of this property to the secrecy tag of the «critical» stereotype on the class.

After a release of the GDPR adopting stricter regulations for the use of personal data, sensitive
information also comprises every kind of personal data. This security context knowledge change
is reflected by the execution of security maintenance. In this maintenance the following actions
are performed, taking the new kind of sensitive information as input:

1. Detection of every instance of the new kind of sensitive information in the software sys-
tem’s design-time models. In the example shown in Figure 8.16, these are the properties
firstName, lastName, and homeAddress.

2. Adding the detected instances to the security level of secrecy, as shown in Figure 8.16. The
changes are highlighted in green and indicated by a ++.

3. Inspecting all incoming dependencies of the changed classes for the mitigation of the intro-
duced violation of Secure Dependency. Here, the CARiSMA can be used to detect violating
dependencies. For the shown example the considered mitigations comprise:

(a) Deletion of the dependency called check.

(b) Extending the security level to LoginControl, the source of the violating dependency.

(c) Extraction of sensitive information into a new class.

As the class LoginControl has to access the class User to verify the password of the user,
the deletion of the dependency in step 3 (a) is not possible. Also, for the implementation
of this class, the developers have already to consider the security level of the class User.
For this reason, a security expert decides to extend the security level as proposed in option
(b). For all other dependencies, she decides similarly.

4. After mitigation has been performed by a developer, the security violation pattern shown in
Figure 8.14 is executed to detect violations of the new security level on the implementation.
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Figure 8.17: Security violating match of a security violation pattern.

1 public class EditPHRAction extends PatientBaseAction {

2 private PatientDAO patientDAO;

3 ...

4 public String updateAllergies(long pid , String description){

5 ...

6 String patientName = patientDAO.getName(pid);

7 List <AllergyBean > allergies = allergyDAO.getAllergies(pid);

8 for (AllergyBean current : allergies){

9 if (current.getDescription ().equals(bean.getDescription ())) {

10 return "Allergy " + bean.getNDCode () + " - " + bean.getDescription ()

+ " has already been added for " + patientName + ".";

11 }

12 }

13 ...

14 }

15 ...

16 }

Listing 8.2: Security violating source code fragment from iTrust.

Afterward, matching the security violation pattern against the program model of the iTrust
implementation detects the occurrence illustrated in Figure 8.17, meaning that a concrete security
violation has been detected on the implementation. The elements in Figure 8.17 are arranged
as in the security violation pattern shown in Figure 8.14: On the left, we see the elements from
the design-time UML model, the center shows the elements from the correspondence model, and
the right-hand part comprises the elements from the program model. The concrete violation is
the access to a getter method of the property lastName by the method updateAllergies of the
class OfficeVisitControl.

The corresponding source fragment of the violating access is shown in Listing 8.2. The
detected security violation takes place in the implementation that allows doctors to edit health
records as part of an office visit. To be more precise, in a method implementing the update of
a patient’s allergies. The concrete violation is the call to the method getName (line 6). This
method is part of a PatientDAO that is a data access object for patient data. As no access to
personal information has been planned in the system model, the whole editing of health records
should be done over a patient ID which is resolved at line 6 and violating the defined security
level. Even more dangerous is that the only use of the personal information is as part of a status
message (line 10) if an allergy has already been recorded which might even be written to log
files. As mitigation of the security violation, personal information has to be removed from this
status message which makes access to personal information obsolete.



148 Chapter 8. Static Security Compliance Checks

O2śPerformance

For applying continuous security checks in practice, the execution times of the security checks
are essential. As part of this objective, we study whether the execution times of the security
violation patterns are feasible and what is the benefit of incremental execution of the security
violation patterns.

Setup. Regarding the application of security violation patterns, for the verification of UMLsec
secure dependency on the implementation level, two violation patterns are required for each
security level. First, for the client not being annotated with the required security requirement,
as shown in Figure 8.14. Second, for the opposite direction, the supplier not being annotated
with the required security level. We applied these two patterns after two kinds of changes. First,
changes that resulted in a security violation and, second, changes that did not affect the security
compliance. Here, we did not change the structure of the implementation but edited the security
annotations to introduce a security violation. To quantify the benefit of incremental security
violation patterns, we executed the security violation patterns incrementally and in terms of a
complete security compliance check.

We measured the execution of the security violation patterns on an Intel Core i5-6200U mobile
CPU running at 2.30GHz with 8GB of memory. As the execution environment, we used Ubuntu
20.04LTS and OpenJDK 14.

Results. For a security-compliant implementation, the incremental security violation patterns’
execution took on average 235 seconds, while the complete security compliance check did not
terminate within 60 minutes. When investigating a change that led to a security violation, the
execution time of the incremental security violation patterns increased to 440 seconds on average.
The full security compliance check did not terminate within a reasonable time.

When discussing dynamic tracing in Section 6.4.2, we identified the potential for inefficiency
due to reverse navigation along the correspondence edges. In this experiment, we faced this
issue. For the considered security violation pattern a reverse-navigation is necessary. In the
incremental case, the amount of required reverse-navigations is one time from the changed UML
model element to a method in the program model and then for each other method involved in an
access relation into the program model. In contrast to this, in the full application, the amount
of required reverse-navigations is in the worst case the cross product of all methods.

All in all, reconsidering objective O2, our tool prototype shows a run-time sufficient for
automatic execution, e.g., as part of a continuous integration pipeline. While there is still
potential for optimizing the prototype’s implementation, e.g., an incremental code-generation,
we already achieved feasible execution times on a consumer computer. Furthermore, we assume a
continuous integration pipeline to be executed on a server with relatively high computing power.

8.6.5 Threats to Validity

The validity of our demonstration of feasibility might be subject to some threats discussed in
what follows. Thereby, we differentiate between internal and external threats.

Internal Validity

An internal threat to validity is that all experiments have been performed by ourselves, precisely
knowing how our tool prototype works. Nevertheless, this still shows that our prototypical tool
is suitable to solve the problem. However, this might not be the way external users want to use
the proposed approach.

Also, the run-time measurements are subject to an internal threat to validity. The run-time
performance of the automated tasks supported by our tooling and carried out in terms of our
feasibility study has been evaluated in a non-closed system. Thus, we cannot rule out other
computational tasks or processes we were unaware of to impact our measurements negatively.
Moreover, performance measurements could be biased by just-in-time compilation overheads of
the Java run time. However, we did not aim for high-precision micro benchmarking in terms of
our feasibility study but to report about the maximal run times that we could observe in terms
of our study to showcase the applicability of our tooling in a real-world setting.
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External Validity

The selection of iTrust as a subject system to demonstrate our approach’s feasibility gives rise
to an external threat. We cannot guarantee that iTrust is representative of all other software
systems our approach could be applied to.

With UMLsec Secure Dependency, we selected only one security check for demonstrating the
feasibility of graph transformation rules for security compliance checks. This limitation gives rise
to another threat. Again, we cannot guarantee the generalizability of our results, this time to
other security checks.

Finally, there is a threat that the considered changes in our feasibility study do not repre-
sent all possible kinds of real-world changes. However, we cover notable changes with different
feasibility study effects, still showing our approach’s practical applicability.

8.6.6 Conclusion on Security Violation Patterns

We demonstrated the applicability and usefulness of the developed techniques in a feasibility
study on a medical information system. Thereby, we focused on two aspects of feasibility. First,
we considered the application to real-world problems and, second, whether execution times are
acceptable. Also, we studied the benefit of the incremental execution of security violation pat-
terns. We introduced how security compliance checks leveraging security specifications on the
system model can be specified using security violation patterns. For these security violation
patterns, we demonstrated how to apply these incrementally to detect security violations on the
implementation level in case of changes in the system model.
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Chapter 9

Verification and Enforcement of

Security at Run-time

In today’s software, security is one of the most important quality aspects [51, 53]. Several ap-
proaches exist to support security at design-time [228, 72, 229], e.g., using design-time models,
but also statically during implementation [230, 231] and at run-time [232, 233, 234]. Unfortu-
nately, few approaches cover coupling these phases so far [121, 235]. Here, we have shown in the
previous chapters how to couple the design time with the implementation time but did not look
at the run-time, yet.

Following our approach, during software development, different representations of a software
system are created, e.g., to plan the security of a software system before implementing it. All
of these single representations have to be kept in synchronization in the case of changes and
compliance with all security requirements has to be re-verified. As discussed in Chapters 6
and 8, we provide tool support for this step. An automatization of this process is usually called
round-trip engineering [236]. Relevant changes can occur as part of the normal development
process but also due to unexpected changes like the deployment of the software system with an
unexpected version of a library or due to an attack. To the best of our knowledge, no existing
approach for secure software engineering supports round-trip engineering considering run-time
information, albeit this is important for several security-related reasons.

First, it is desirable to find vulnerabilities as early as possible [237]. For this reason, support
to automatize detection of and reaction to breaches should be provided starting from the design
time. Unfortunately, many security violations are hard to detect in the system design or source
code [238, 239, 240]. This especially applies to vulnerabilities based on concepts as Java reflection,
which are statically not analyzable to their full extent. Here, we need the possibility to enforce
design-time security decisions at run-time.

Second, as the source code is usually not generated from the design-time models, divergences
between the design-time security assumptions and the implementation likely appear [22]. To
ease the investigation of the violations, the design-time models should be automatically adapted
to also contain the observations made at run-time.

All in all, this breaks down to our third research question of how to support developers in
the development of a secure software system.

RQ3: How can developers be supported in realizing, preserving, and enforcing design-time se-
curity requirements in software systems?

To be more precise, in this chapter we are going to answer the third sub-question of RQ3:

RQ3.3: How can design-time security requirements be enforced at run-time?

In what follows, we introduce the run-time security enforcement of GRaViTY, called UMLse-
cRT. As shown in the previous chapters, the GRaViTY approach enables developers to specify
security requirements in design-time models or source code. UMLsecRT takes these security
requirements and monitors compliance with them at run-time. Violations and findings at run-
time, like possible attack sequences and monitored calls, not covered by the design-time model,
can be synced back to the model by adapting it. If a security property is violated, e.g. by a
vulnerability introduced during an update or an attack, the system operator is notified and the
software system is brought into a safe state. What is considered a safe state in which situation,
is also handled within the security requirements.
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Figure 9.1: Concept of the run-time monitoring in the overall approach.

Figure 9.1 visualizes our approach for enforcing security at run-time and adapting system
models based on run-time information. We explain the usage of the approach step by step:

1. For round-trip engineering, a UML model consistent with the source code is required, e.g.,
a class diagram for the UMLsec security requirements considered in this thesis. If such a
model is not available, our approach supports reverse engineering it from Java source code
as discussed in Chapter 7. If only security monitoring is required (not the possibility for
round-trip engineering), working only on the source code is also possible. In this case, the
security annotations can be applied directly and only to the source code.

2. A developer annotates, assisted by tool support [73], the UML model, the source code,
or both with security requirements derived from the project’s requirements. Thereby, the
UMLsec annotations can be directly used for static security checks using the tooling of
UMLsec and the static security compliance checks introduced in Chapter 8.

3. Annotations added to the model are automatically synchronized with the source code and
vice versa. If only the UML model has been annotated, source code annotations can be
generated automatically from the model.

4. The annotated Java source code is executed and the execution is monitored for security
violations concerning the security annotations added in the earlier steps.

5. The design-time models are adapted based on the security-relevant data gathered at run-
time. For example, by adding sequence diagrams describing detected violations.

Using the proposed approach, developers cannot only enforce compliance with the security re-
quirements specified during the development of a software system but also adapt the design-time
models to inspect and react to security violations observed at run-time. Including UMLsecRT,
the GRaViTY approach proposed in this thesis contains integrated tool support covering all
phases from early software design over the implementation of a software system to its execution.

The remainder of this chapter is organized as follows: Section 9.1 discusses background on
security compliance at run-time. Afterward, we introduce an explanatory security violation in
the iTrust system in Section 9.2. We will use this security violation to demonstrate our run-time
monitoring approach. Section 9.3 introduces this run-time monitoring approach and covers how
to monitor for violations at run-time, and how to perform countermeasures if security violations
occur. Section 9.4 presents a prototypical implementation of UMLsecRT. In Section 9.5 we
evaluate the run-time monitoring approach. We elaborate on threats to validity in Section 9.6.
In Section 9.7, we conclude and give an outlook on future work.
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9.1 Background on Security Compliance at Run-time

Many security-related issues are related to concepts like Java reflection or dynamic class loading.
As such concepts are statically not analyzable, these have to be checked at run-time.

1 public static Object reflectiveCall(Object instance , String name ,

Object [] params) {

2 Class <?>[] types = new Class <?>[ params.length ];

3 for(int i = 0; i < params.lengt; i++) {

4 types[i] = params[i]. getClass ();

5 }

6 Method method = instance.getClass ().getMethod(name , types);

7 method.setAccessible(true);

8 return instance.getClass ().invoke(instance , method , params);

9 }

Listing 9.1: Example for Java reŕection.

Listing 9.1 demonstrates the infeasibility of static analysis for Java reflection. The method
reflectiveCall allows invoking an arbitrary method of any class. For this purpose, the object
instance on which the method should be invoked, the name of the method, and values for the
parameters are required. First, in lines 2–5, the type of the method’s parameters are calculated.
Afterward, in line 6, the method retrieves an object representing the method to invoke and sets it
to accessible in line 7. This allows to not only invoke public but also private methods. Finally, in
line 8, the method is invoked and the return-value forwarded. In this implementation, no specific
value is given, that can be used to calculate the method to be invoked. Possible values, e.g., for
the method name, have to be traced across all call locations of the method reflectiveCall.
Thereby, the construction of the method name can be arbitrarily complex and in the worst-case
depend on external data, e.g., user input.

Accordingly, many run-time checks have been developed. All of these checks come with a
high overhead making them infeasible to monitor the whole software system. For example, the
JBlare monitor has an overhead of a factor of 12 for class loading and 4 for execution [241].
Again, the information about the most sensitive parts of the software system, that should be
monitored under any circumstances, and parts not relevant for the software systems security is
available in the design-time models.

While all these different security checks on the different artifacts can help in the development
of a secure software system, they are often limited to their area of focus. However, such security
checks are more powerful when they are combined. For example, often information required by a
security check on a lower level has already been defined at design time. This information should
be reused to avoid misunderstandings and divergence in the security assumptions but also to
improve the effectiveness of the checks. Unfortunately, doing so is challenging and should be
assisted by tool support.

9.2 Example Security Violation

As part of the UC28, iTrust allows doctors to search for their patients. This search has been
implemented in the SearchUsersAction shown in Listing 9.2. A search can be performed by
calling the searchForPatientsWithName method. While it has been planned that the function-
ality of this class is only available for legitimate users, e.g., licensed health care professionals
(LHCP), a check should be performed when an instance of the class is created (line 7), this check
of the MID has not been implemented.

For the hashing of passwords, e.g., at the creation of new users in an iTrust installation or
changing a password as described in UC57, the external library Apache Commons1 is used in
iTrust. Line 10 of Listing 9.3 shows one usage of this library. The sha256Hex method of the
library is used to hash a salted password at resetting a user’s password in the database of the
iTrust system. In the rest of the method, an SQL statement for updating the hashed password
and salt for a MID is created and executed.

In Listing 9.4, we show how a malicious library can exploit the iTrust system every time
a new password is created, e.g., by executing a search for user information and sending it to

1Apache Commons: commons.apache.org

commons.apache.org
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1 @Critical(secrecy ={"search(String ,String):List"})

2 public class SearchUsersAction {

3

4 private PatientDAO patientDAO;

5 private PatientDAO personnel;

6

7 public SearchUsersAction(DAOFactory factory , long loggedInMID) {

8 this.patientDAO = factory.getPatientDAO ();

9 this.personnelDAO = factory.getPersonnelDAO ();

10 }

11

12 @Secrecy

13 public List <PatientBean > searchForPatientsWithName(String firstName ,

String lastName) {

14 try {

15 if("".equals(firstName)) firstName = "%";

16 if("".equals(lastName)) lastName = "%";

17 return patientDAO.search(firstName , lastName);

18 }

19 catch (DBException e) {

20 return null;

21 }

22 }

23

24 ...

25 }

Listing 9.2: Source code of a class for accessing patients with security
annotations.

1 public class AuthDAO {

2

3 public void resetPassword(long mid , String password) {

4 Connection conn = null;

5 PreparedStatement pstmt = null;

6 try {

7 conn = factory.getConnection ();

8 pstmt = conn.prepareStatement("UPDATE users SET password=?, salt=?

WHERE MID=?");

9 String salt = shakeSalt ();

10 String newPassword = DigestUtils.sha256Hex(password+salt);

11 pstmt.setString (1, newPassword);

12 pstmt.setString (2, salt);

13 pstmt.setLong(3, mid);

14 pstmt.executeUpdate ();

15 pstmt.close ();

16 } catch (SQLException e) {

17 throw new DBException(e);

18 } finally {

19 DBUtil.closeConnection(conn , pstmt);

20 }

21 }

22

23 ...

24 }

Listing 9.3: Source code of the method for resetting a user’s password in
iTrust’s database.
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the outside. We assume that the Apache Commons library has been replaced by a malicious
version at deployment time. Whenever the sha256Hex method of the malicious library is called,
the malicious implementation tries to query the data about patients in the iTrust system. For
example, we use the home address of a patient, that has been classified at the security level of
secrecy. To access this critical information, the malware makes use of the circumstance that it has
been called from a sensitive method deeply in the iTrust system and the missing authentication
in the constructor of the SearchUserAction class.

The malware is implemented as follows. In line 6 of Listing 9.4, the malware makes use
of the missing authentication in the constructor of the class SearchUserAction and creates an
instance. This instance is then used to search for arbitrary patients in the iTrust system. To
avoid detection by static analyses, it now uses the reflectiveCall of Listing 9.1. This method
uses the Java-Reflection API for invoking arbitrary methods. In line 9, the getIcAddress1

method of the class PatientBean is invoked in this way to access the critical data. Afterward,
the retrieved data is passed to a send method that sends the information to the outside. Finally,
in line 13, the original implementation of the library method is executed and its return value
forwarded.

1 package org.apache.commons.codec.digest;

2

3 public class DigestUtils {

4

5 public static String sha256Hex(final String string) {

6 final List <PatientBean > patients = new SearcgUsersAction action = new

SearchUsersAction(DAOFactory.getProductionInstance (), -1);

7 action.searchForPatientsWithName("%", "%");

8 for(final PatientBean bean : patients) {

9 String address = (String) reflectiveCall(bean , "getIcAddress1", new

Object [0]);

10 // do something evil with the address

11 send(address);

12 }

13 return sha256Hex_original(string);

14 }

15

16 }

Listing 9.4: Sourcecode of a Malicious Implementation of a Library

In the succeeding section, we introduce a realization of secure dependency on code level which
prepares run-time monitoring of this security requirement.

9.3 Verification at Run-time and Model Adoption

We propose to couple security at design-time with security at run-time by using the notation for
specifying security requirements in Java source code introduced in Section 6.4.1. This notation
maps the UMLsec secure dependency stereotypes to corresponding Java annotations with the
same semantics. When the retention of these Java annotations is set to RUNTIME, these are
contained in the Java bytecode and can be monitored at run-time. Additionally, we utilize the
reverse engineering and synchronization of UML models annotated with UMLsec stereotypes and
Java source code annotated with security annotations (Section 6.2 and Section 6.4.1). We further
demonstrate how we realize countermeasures to mitigate security violations at run-time. At the
end of this section, we discuss how we automatically evolve the software system’s architecture
based on the information about security violations collected at run-time.

9.3.1 Security Monitoring at Run-time

After the specification and static verification of security requirements, the next step is to ex-
ecute the annotated source code and to monitor the execution for security violations (step 4
in Figure 9.1). To ensure that we detect every security violation wrt. secure dependency, we
have to check all method calls and field accesses for their compliance with the specified security
requirements. There are built-in security mechanisms in Java, such as the Security Manager, but
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these are insufficient for realizing UMLsecRT, because they cannot be configured fine-grained
enough (only on jar-file or classpath-entry level) and are only executed when the method check-
Permissions is explicitly called [60]. We need to take action as soon as any method is entered or
exited or any field is accessed. According to Secure Dependency, we have to consider two cases
that can appear at the same time:

1. the accessed member is missing an annotation, or

2. the accessing member is missing an annotation.

We reify monitoring by instrumenting the compiled code using Javassist, a framework for
bytecode manipulation of Java programs [242, 243]. Instrumentation needs to take place at run-
time because it is not foreseeable which classes will be loaded, e.g., due to dynamic class loading.
We encapsulated the run-time part of UMLsecRT into a Java agent which is called before the
main method of a Java program is called. The byte code instrumentation provided by our agent
is triggered every time a class is loaded and instruments appropriate code to conduct the secure
dependency check at run-time. An excerpt from the code injected into methods is summarized
in Listing 9.5 and explained in what follows.

While the JVM maintains call stacks for all threads [244], required information as the anno-
tated security requirements are not accessible from these stacks. For this reason, the UMLsecRT
agent provides a global set of stacks for call traces, one stack per thread. The corresponding
stack for a method is retrieved as soon as the method is entered (line 1 of Listing 9.5). Whenever
a method is entered, the conditions of secure dependency are checked in line 5. To accomplish
this, whenever such a relevant event occurs, we need to investigate the call trace backward and
check both if the originating method is annotated as required and if the accessed member is
annotated as requested by the originating method. In line 2, the security annotations of the
originating member are read from the stack, and in lines 3–4, the annotations of the currently
instrumented method are built by reading them from the bytecode and hard-coding them into
the injected code. Additionally, the method is pushed to the stack (line 6). After all statements
of the methods have been executed, but before the return statement in line 8 is finally initiated,
the method is removed from the stack.

1 RTStack stack = RTStackManager.getStack(currentThread ());

2 RTAnnotation originating = stack.peek();

3 String [] secrecy = ... // Signatures on the secrecy level

4 RTAnnotation accessed = new RTAnnotation("Signature of this method",

secrecySet);

5 check(originating , accessed);

6 stack.push(accessed);

7 ... // Original method code

8 stack.pop();

Listing 9.5: Code for monitoring security, injected before and after methods.

As field accesses are statically analyzable [60], we check them whenever a new class is loaded.
Depending on the developer’s preferences, we can directly throw security exceptions or instrument
the field access in a way that a security exception is thrown when the access is executed. An
exception to this is reflective field accesses. Here, we instrument the Java reflection library
methods to execute the required checks.

In Figure 9.2, we demonstrate the security monitoring for the execution of iTrust use case
UC57 of changing a user’s password. The figure shows a control flow graph excerpt on the left
and the executed monitoring steps on the right. Due to numerous involved methods and fields,
we only look at the excerpt already considered in the previous chapters. To be more precise,
we use the methods discussed in the program model excerpt of Figure 7.5, which has been used
in Chapter 7 to introduce the correspondence model between the DFD describing UC57 and
the implementation. Among others, the considered excerpt contains the usage of the method
resetPassword, which is shown in Listing 9.3 of this section, by the method changePassword.
The implementation of the changePassword method has been shown in Listing 2.1 when intro-
ducing iTrust in Chapter 2. In addition to these methods, we consider the usage of the sha256Hex
method by the method resetPassword.

First, we look at the execution sequence depicted in the control flow graph. At the beginning
of the execution, the method changePassword of the class ChangePasswordAction is called by
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Figure 9.2: Events monitored at run-time and performed check steps.

the user through the web UI to change her password. The user’s MID as well the data entered
into the web-form (old password and two times the new password) is passed to this method as
parameter values. This method accesses the field authDAO and calls the authenticatePassword

method on the field to check the correctness of the entered password to decide if a change is
permitted. The called method executes additional calls, we do not consider now. Afterward,
the changePassword method compares the two new passwords by calling the equals method
on the first password. In the considered execution sequence, the passwords are equal and the
reset of the password to the new password is triggered by a call of resetPassword. As shown in
Listing 9.3, this method first calls a method for initializing an SQL statement and retrieving a
salt, which we do not consider in detail in this example. After these calls, the method sha256Hex

of the class DigestUtil is called. This method calls additional methods that are beyond the
considered scope of the example and are not depicted in detail in Figure 9.2.

After, discussing the considered execution sequence, we now look at the executed agent
calls. To the beginning of every method a check and push functionality has been written at
instrumenting the classes. Accordingly, when entering the first method of the considered sequence
(changePassword), in agent call 1), the security compliance of this method with the method on
top of the stack is checked. Afterward, the method changePassword is pushed to the stack at
the end of this agent call.

Next, the field authDAO is accessed. As all fields have been statically checked at class loading,
in agent call 2), the results of this check are loaded for the accessing method changePassword.

For the call of the method authenticatePassword, agent call 3a) takes place as soon as the
body of this method is entered. Again, the top of the stack is retrieved and the compliance
between the current method and the top of the stack is checked. In this case, the top of the stack
is changePassword that we pushed to the stack in agent call 1). After the compliance has been
checked, authenticatePassword is pushed to the stack. The same behavior takes place for all
methods invoked by authenticatePassword. When the execution of authenticatePassword

ends, the top element is removed from the stack in agent call 3b). As this takes always place as
soon as a method is left, this removed element is always the method whose execution ends, in
this case, authenticatePassword.
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Afterward, the execution goes back to changePassword, that calls the equals method. Again,
the security compliance is checked in agent call 4a) and the method is pushed to the stack. This
method does not call any other methods and is removed from the stack in agent call 4b).

Next, changePassword calls the method resetPassword, that is checked for security compli-
ance and pushed to the stack in agent call 5). This method now calls some methods before calling
sha256Hex. Here, we can see how the stack grows with the dept of calls. The resetPassword

method has not been removed from the stack yet. In addition, when it comes to agent call 6),
sha256Hex is also pushed onto the stack. Only considering the methods shown in Figure 9.2, after
agent call 6) the methods changePassword, resetPassword, and sha256Hex are on the stack.

In case one of the validations on the right of the figure fails, we provide various reactions to
mitigate the violation. We discuss these reactions in the next section.

9.3.2 Countermeasures

If a violation of secrecy or integrity is detected, we provide four different kinds of countermeasures
to study the violation and to prevent harm:

1. Log actions of potential attacks for future evaluation

2. End the attack by shutting down the application

3. Provide a statically defined value instead of the real value

4. Call operations implementing countermeasures

The simplest reaction is to log the call or access leading to a violation and all calls and
accesses which take place after the violation. This could be a classical textual log file or sequence
diagrams as generated by our automated system evolution, described at the end of this section.
Logging will not prevent damage caused by the occurred violation but enables system developers
to study the violation and adapt the software system to prevent future damage. To actively
encounter a violation, we provide several reactions to stop exploiting a software system and thus
combine logging with additional countermeasures we discuss in the remainder of this section.

The first active reaction is to terminate the software system and notify the system operator.
Surely, the termination of a whole software system is in many cases undesired. Considering
software systems used in critical contexts, the damage caused by a not running software system
can be quite high, and considering a risk assessment higher than a maybe limited data loss. For
example, in September 2020, the EHR system and many other systems of a German hospital
have not been available due to a ransomware attack. As a consequence, emergency patients
were redirected to other hospitals that may have played a role in the death of one patient [245].
In this sense, an attacker could knowingly cause a security incident to ultimately provoke a
shutdown as the actual goal. For this reason, shutting down the system is no option for iTrust.
However, in software systems with low requirements regarding availability, in combination with
logging, a controlled shutdown might be a valid option. As an alternative to keep the software
system running and to actively prevent it from harm, we support changing return and field
values in case of a violation. For instance, returning null is a well-known reaction in case of
unforeseen or unusual situations. This prevents the software system from disclosing real data
to an attacker. For this reason, our security annotations support having statically defined early
return or field values.

In many cases, realistic data cannot be specified statically but has to be generated dynamically
to pass simple plausibility checks and not cause exceptions to be thrown. For example, an
array has to contain an expected amount of entries that can depend on run-time information.
Furthermore, there can be a need for additional countermeasures to bring the software system
into a fail-safe state and to protect other parts of the software system from an ongoing attack.

Early return values are defined in both cases by a parameter earlyReturn of @Secrecy

and @Integrity. This parameter can be any primitive type, String, null, or the name of
a parameterless method within the class, which should be called. This method can perform
any operation accessible from the scope of the accessed member. To avoid accidental use of
methods providing countermeasures at the regular program execution, we additionally provide
@CounterMeasure: whenever a method annotated in such a way is entered, UMLsecRT prohibits
this call by returning null.
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1 public class PatientBean {

2

3 @Secrecy(earlyReturn = "secure")

4 private String icAddress1;

5

6 @Secrecy(earlyReturn = "secure")

7 public String getIcAddress1 () {

8 return icAddress1;

9 }

10

11 @CounterMeasure

12 public String secure () {

13 StringBuilder s = new StringBuilder ();

14 Random random = new SecureRandom ();

15 for(int i = 0; i < 10 + random.nextInt (10); i++) {

16 s.append ((char) random.nextInt(’z’ - ’a’) + ’a’);

17 }

18 SecurityManager.startSafeMode ();

19 return s.toString ();

20 }

21 }

Listing 9.6: Specification of a countermeasure.

Listing 9.6 exemplifies the usage of calling an additional method to determine an early return
value: secure():String will be called if a security violation of the secrecy property of the field
icAddress1 or the method getIcAddress1 occurs at run-time. This method generates a random
string that is returned instead of the real address of the patient. Also, the software system is
set into safe mode at a central class SecurityManager. For example, this could mean that only
a limited set of functionality is working in this mode and non-essential functionality that might
have a critical impact if exploited, e.g., the changing of passwords is not permitted.

9.3.3 Automated Software System Evolution

After the detection of a security violation, even if it has been mitigated by UMLsecRT, the
software system has to be adapted to reduce the attack surface regarding this violation. Especially
for software systems extensible with plugins or accessible over the Internet, system models might
not cover all possible ways the software system can be extended or how it can be accessed, which
makes adaptation difficult. Here, the data logged by UMLsecRT can be helpful but a simple log
file stating what happened can be hard to understand and mappable to the architecture. For the
specification of call sequences, UML provides sequence diagrams [4]. Sequence diagrams allow
developers easily to understand which parts of the software system are involved in a specific call
sequence as the corresponding model elements are directly used in the diagram.

To cope with these issues we suggest as the fifth step in Figure 9.1 an automated evolution
of the UML system models reverse-engineered in step 1. This automated evolution covers:

1. addition of missing UML elements to the design-time models,

2. and documentation of security violations as sequence diagrams with explicit references to
involved UML elements.

As generating such diagrams might be time-consuming and requires the usage of additional
libraries such as the UML library, at run-time, UMLsecRT stores data in a custom format that
is used for model adaption afterward. Figure 9.3 shows the format of the information recorded
at run-time, specified as a class diagram.

For every application that is monitored using UMLsecRT, as soon as a security violation
is detected, a Protocol is created, containing information about the date and time at which
the security violation occurred (date) and the monitored application (application and path).
Also, the current call stack is stored in the Protocol and extended as long as the monitored
application runs.
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Protocol

date : String

application : String

location : String

Call

clazz : String

member : String

bin : String

ID : long

prevID : long

violations : String

[0..*] calls

{ordered}

Figure 9.3: Format used by UMLsecRT for recording call-sequences.

For every member on the stack or accessed later, a Call is recorded. These calls are stored in
the order of their addition. For the identification of the member, this Call contains the signature
of the member member, the fully-qualified name of the class defining the member (clazz), and
the path from which the class has been loaded (bin). Also, each call has a unique ID and contains
the ID of the last call to the member from which the current call originates (prevID). Finally,
information about violations or countermeasures is stored (violations).

In the remainder of this section, we discuss how these evolution steps can be realized using
the gathered data.

Addition of missing Elements

For the addition of missing elements, we consider two different UML diagrams available in sys-
tem models. First, the UML class diagram on which the secure dependency property has been
specified. On this diagram, we add the classes discovered at run-time as well as observed de-
pendencies. While this immediately allows visualizing the violation of secure dependency, the
concrete identification of the classes missing in the system model might not be possible if these
are not contained in the known classpath but have been side-loaded maliciously. For this reason,
we also generate a deployment diagram showing from which artifact, e.g, a class file or library,
the class has been loaded. Furthermore, this allows distinguishing between classes that have
accidentally or maliciously the same name and namespace. Also, we show from which device the
missing classes have been loaded.

Figure 9.4 shows a deployment diagram of the running example combining the class diagram
with the deployment relation. The shapes with white background resemble the elements coming
from the (reverse-engineered) model. On top of the figure, the adapted class diagram is shown,
and at the bottom of the figure, the adapted deployment is shown. Thereby, the deployment is a
more detailed version of the general deployment architecture shown in Figure 15.3, focusing on
the internal structure of the iTrust artifact. These two diagrams are connected by «manifests»

relations, expressing which artifacts contain which classes.
For the known part of the software system, it shows the usage of the PatientBean by the

class SearchUsersAction, for which a source code excerpt is shown in Listing 9.2. Below those
two types, we can see on which artifacts those are deployed and on which execution environment
they are manifested. Both are expected parts of the iTrust implementation and are deployed
on the iTrustServer. Also, the class DigestUtil, which comes from the Apache Commons
library (commons-codec-1.9.jar), is an expected part of the iTrust system. However, the call
to the class PatientBean, that the maliciously exchanged version of the library from Listing 9.4
performs, is not defined in a design-time model. For this reason, UMLsecRT added a dependency
expressing this call to the model and highlighted it with a comment.

The shapes with a gray background on the right side of the figure were also automatically
added as evolution steps by a UMLsecRT guarded execution and represent entities not present
in the design-time models. These show further actions of the malware introduced in Listing 9.4
that has not been considered by the system’s developers. In this case, the DigestUtil calls an
additional class Send that is not contained in the design-time models.

For the identification of unknown and known elements comparing their fully qualified names is
not sufficient. A Java class that has the same fully qualified name as a UML Classifier might still
be injected by an attacker using a weakness of the implementation. Also, there might be two Java
classes with the same name and namespace at run-time. Here, we improve the identification of
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Figure 9.4: Deployment and manifestation of classes with evolution.
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Figure 9.5: Sequence diagram automatically generated by UMLsecRT.

elements by considering their manifestation dependencies specified in deployment diagrams such
as Figure 9.4. In addition to comparing the fully qualified names, we compare the manifestation
of UML elements in artifacts with the protection domains of Java classes. A protection domain
contains the information from where the classloader loaded the class and is represented by the
manifestation in the UML model. Based on the protocol over which a class has been loaded, e.g.
a file or socket, we can even check if the deployment of the artifact manifesting a Classifier is the
expected one. In the deployment diagram shown in Figure 9.4, we can see that the class Send

has been loaded from a class file that came from an external server. In such cases, the name of
the node is set to the URL or IP address of the server it represents. In the recorded data, this
information is stored in the property bin.

Documentation of Security Violations.

To understand an attack it is not only necessary to show which method call or field access
leads to a security violation but it is of special interest which sequence of actions the attacker
performed. In what follows, we first show a sequence diagram that has been generated for the
example security violation. Afterward, we show how such sequence diagrams can be generated
from the data UMLsecRT collects at run-time.

Example for a generated sequence diagram: Figure 9.5 is a sequence diagram generated
by UMLsecRT during monitoring execution of the running example, cf. Listing 9.4. It outlines
a call sequence leading to a security violation and the mitigation carried out against it. The call
of the method getIcAddress1():String by the method sha256Hex is the source of the security
violation. For highlighting this violation for developers, a Violation of Secrecy comment has
been added to the message representing this call. While this call is obfuscated by the use of
Java reflection in the implementation, we can show the effective calls in the generated sequence
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diagrams. Which countermeasure has been executed is also shown in a comment. In this case,
the method secure() has been called as specified in Listing 9.6. After the violating call, the
attacker called send(String) but due to the countermeasure not with the secret value. As the
software system has been set into safe mode as part of the countermeasure, the user’s password
is not changed using the potentially malicious hash of the new password. Here, we assume that
resetPassword asks the SecurityManager about the current safe mode state before changing
passwords in the iTrust database.

Due to efficiency reasons, we do not keep track of all methods already being returned but
beginning with the violation all future accesses are recorded and will be visualized. In this case,
for the methods that have been called after the security violation, this is just one additional
call of send. An example for a method that is not part of the generated sequence diagram but
shown in the control flow graph of Figure 9.2 is the method authentiatePassword, that already
terminated before resetPassword has been called.

Generating sequence diagrams: To generate sequence diagrams, we have to translate our
internal stack structure as shown in Figure 9.2 and recorded in the format shown in Figure 9.3
into a sequence diagram. To do so, we translate every method call into a synchronous message
in the sequence diagram. For every accessed field we generate a lifeline, e.g. the lifeline a of type
AuthDAO in Figure 9.5. Also, we create lifelines for classes if static members of those are accessed
or we cannot determine the variable the method is called on. For the first element on our stack,
we create a message from a start node. All other elements on the stack have always exactly one
predecessor from which the corresponding message originates and to which the return message
goes. Before the return message is added to the diagram, first all successors are added to the
diagram. As the list of predecessors is ordered, we automatically get the correct sequence of
messages. Listing 3 shows this procedure in detail as pseudo-code.

As input for the generation of a sequence diagram, we take a Protocol compliant to the
specification in Figure 9.3 and return a UML Interaction containing the sequence diagram.
First, we initialize three maps in lines 1–3. The first map names2lifelines, maps pairs of
protection domains and class names to lifelines. The second map allows immediate access to
every processed Call using its ID, and the third map, provides access to the return message
generated for a Call, using its ID. Afterward, we initialize a new Interaction in line 4.

Next, we iterate over all calls in the order of their addition, starting with the first added call.
In each iteration, we first lookup in the map names2lifelines whether we already created a
lifeline in the interaction I for the current Call or not. If there is already a lifeline, retrieve
this lifeline or create a new one otherwise. Afterward, we lookup if we already translated the
predecessor of the current Call of this iteration. This should always return a Call except for
the first recorded call that has no predecessor.

In lines 8–17, we determine the kind of message suitable for representing the current Call,
and if suitable, the lifeline from which the current call originates. If we process the call sequence’s
first call, prevCall is not defined, and we create an asynchronous message. Also, there is no
lifeline from which this message will originate. Otherwise, in line 9, we retrieve the lifeline for
the source of the call. Afterward, we distinguish between calls to constructors and methods or
fields. Here, we assume, that a constructor has the same name as the class in which it is defined.
For constructors, we create a create message and for all other members a synchronous message.

In line 18, the message representing the Call is created using the previously determined
information. Please note that UML always handles a message, whose source is not set, as found
message, and no special treatment for the initial call is required. Next, in lines 19–23, we create
the reply messages for synchronous messages as well as the highlighting for active times of a lane.
Also, we add the reply message to the map containing all replies.

As the last creation step, in lines 24 to 27, we arrange the ordering of the messages. If no
explicit order is given, the messages are added to the end of the lifeline. However, if a message
has been called within the active time of another message, we have to adjust this order. For doing
this, we retrieve the return message of the predecessor, in line 24, and move the message created
in this iteration before the retrieved reply. If there was no reply message for the predecessor, no
adjustment of the order is required.

Finally, at the end of each iteration, we put the Call to the map of already processed calls
(ids2calls). After processing all calls in the protocol, we return the generated Interaction.
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Algorithm 3: Generation of a sequence diagram from UMLsecRT’s protocol.
Input : Protocol P
Output: Interaction I

1 names2lifelines := Map<(String,String),Lifeline>→new;
2 ids2calls := Map<long,Call>→new;
3 ids2replies := Map<long,Message>→new;

4 I := Interaction→new;

5 foreach call ∈ P.calls do

6 rhs := names2lifeline→getOrCreate(call.bin, call.clazz);
7 prevCall := ids2calls→get(call.prevID);

8 if prevCall = null then

9 kind := ASYNCH_CALL_LITERAL;
10 else

11 lhs := names2lifeline→get(prevCall.bin, prevCall.clazz);
12 if getNamme( call.member) = call.clazz then

13 kind := CREATE_MESSAGE_LITERAL;
14 else

15 kind := SYNCH_CALL_LITERAL;
16 end

17 end

18 message := createMessage(lhs,rhs,call.member,call.violations,kind);
19 if kind = SYNCH_CALL_LITERAL then

20 reply := createReply(lhs,rhs,call.member);
21 createBehaviorExecutionSpecification(message,reply);
22 messages→put(call.ID,reply);

23 end

24 successor := ids2replies→get(call.prevID);
25 if successor ̸= null then

26 message→getOccurrenceSpecification()→setToAfter(successor);
27 end

28 ids2calls→put(call.ID, call);

29 end

30 return I ;
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Figure 9.6: Structure of the UMLsecRT implementation.

9.4 Tool Support for Monitoring and Adaption

To evaluate UMLsecRT, we implemented prototypical tool support for UMLsecRT. Generation
of monitored call sequences as sequence diagrams and missing model elements that appear at
run-time is supported, too. We present the prototype in detail in this section. In Section 9.5, we
elaborate on the evaluation of UMLsecRT in detail, based on this prototype.

In Figure 9.6, we show the structure of our implementation, realizing UMLsecRT as intro-
duced in Figure 9.1, in detail. In both Figures (Figure 9.1 and Figure 9.6) we use the same
number labels for respective steps. In what follows, we elaborate on the implementation’s key
features in order of the number labels.

9.4.1 Java Annotations and IDE Support

For the security annotations on the source code level, we used the Java annotations specified
in Section 6.4.1 and added the support for countermeasures. To ease development and further
support the developer, we also implemented a validation plugin for the Eclipse IDE2 to validate
GRaViTY annotations. This validation mainly ensures if the types specified in early return
values fit the types of annotated fields and return types of annotated methods. This check covers
not only statically specified early return values but also return types of methods that are called
in case of security violations.

9.4.2 Validation at Run-time and Countermeasures

As soon as a developer annotated the UML model and Java source code with the UMLsecRT
annotations and synchronized the annotations as described before, he executes the program and
monitors it using UMLsecRT, cf. step 4.

To realize monitoring, we make use of bytecode instrumentation as provided by the bytecode
manipulation framework Javassist [242]. To access the running software system, we implemented
a Java agent, which can be called, e.g., via the JVM’s -javaagent command-line, and is docu-
mented in the package java.lang.instrument [247].

The JVM calls our agent whenever a class is loaded. Our agent then transforms the bytecode
of the class by injecting the code to keep track of the call stack, issuing checking of the Secure
Dependency conditions at appropriate times, as shown in Figure 9.2 and Listing 9.5, and also to
produce report data to realize model adaption (step 5). Static checking of potential malicious
field accesses is also executed when the class is loaded. As the agent is also called on dynamically
loaded classes, the analysis we provide is a hybrid analysis not depending on the local availability
of all classes. Which of the discussed countermeasures should be performed, when a security
violation is detected, is specified as an argument when launching the application with the agent.

A threat regarding security is that attackers can inspect the software systems and add UMLse-
cRT annotations to their malicious code to avoid detection. This issue can be solved by the ad-
dition of cryptographic signatures to the annotations. If UMLsecRT annotations are only used

2Website of the Eclipse IDE: https://www.eclipse.org

https://www.eclipse.org
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as an internal security mechanism, commits containing changes to security annotations can be
only accepted from developers with sufficient rights. As the signature check only has to take
place at the loading of a class, this is a static overhead and has only a relatively low impact on
long-running programs of a software system.

9.4.3 Automated Adaption of Design-Time Models

While we support synchronization of model and code, there may be associations between the
model and code that still are not covered and cannot be detected statically. This especially
applies to dynamic behavior introduced by libraries and reflective calls. While program execution
is monitored, cf. step 4 in Figure 9.6, our implementation of UMLsecRT keeps track of every
method which has been entered and not exited yet.

The prototype facilitates the graphical presentation of the observed call flows by creating
sequence diagrams (cfer. step 5 of Figure 9.6). As our tool can keep track of every method and
field that is accessed, we can check continuously if a call edge detected in the monitoring has
respective elements in the model. If not, the tool can feed this information into the model by
adding respective elements.

9.5 Evaluation of the Security Monitor

We evaluate the applicability of UMLsecRT and its tool support regarding three objectives:

O1śEffectiveness Can we detect real-world security violations using UMLsecRT?

O2śApplicability Can we monitor real-world Java programs with a reasonable run-time over-
head using UMLsecRT?

O3śUsability How useful are the adapted UML models for investigating security violations
observed at run-time?

In the following we introduce the evaluation objectives in detail, present the methodology
and the evaluation’s results. We performed the experiments on a system equipped with an Intel
i5-6200U CPU, 8 GB RAM, and running Oracle JDK 8 on Ubuntu 20.04.

9.5.1 O1śEffectiveness of the Run-time Monitoring

At first, we study the effectiveness of UMLsecRT for the detection of realistic vulnerabilities and
compare it to the Java security manager.

Setup. For this evaluation, we studied the causes of real-world security violations, reproduced
them, and evaluated the detection and mitigation of them as performed by UMLsecRT and the
Java security manager.

Common weaknesses of software are collected in the common weakness enumeration (CWE)
using a unique ID for every entry [248]. However, the presence of weaknesses does not imply
that the weakness can be actively used to perform malicious actions. Nevertheless, weaknesses in
software should be detected and fixed. In Table 9.1, we briefly summarize the CWEs considered
in our evaluation and how they are mitigated by UMLsecRT if they are exploited.

To study the effectiveness and precision of static weakness detection approaches the Juliet
tests suite has been created. For many CWEs, the Juliet test suite provides a database of good
and bad code examples [249, 250]. Unfortunately, it does not contain examples to exploit the
weaknesses maliciously. Such an exploit is needed to violate Secure Dependency.

For example, the weakness CWE470 ś Unsafe Reŕection states that using the Java reflection
API to load classes based on external data is dangerous. To detect this violation statically, it has
to be determined if the values passed to the reflection API, e.g., the name of a class to be loaded,
are created from external data. A small change in how the name of a class is passed to the API
can have a huge impact on the detection and this is what the Juliet test suite is designed for.
While the detection of all these different variations of a single weakness is challenging statically,
the concrete values can be inspected at run-time. As the Juliet test suite is designed for static
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Table 9.1: Considered CWEs and their mitigations by UMLsecRT.

CWE description & mitigation

200 ś Exposure of Sensitive Information UMLsecRT prevents the exposure information by
checking every access to data declared as sensitive.

209 ś Sensitive Information in Error Message If @Secrey is required from print methods of ex-
ceptions, calls to those not compliant are pre-
vented.

226 ś Sensitive Information Uncleared in Resource UMLsecRT prevents illegal access to fields de-
clared as sensitive.

327 ś Broken Cryptography If required security guarantees of a hash or encryp-
tion/decryption function have been removed, e.g.,

328 ś Reversible One-Way Hash due to an update of a library, UMLsecRT prevents
calls to those.

470 ś Unsafe Reŕection UMLsec Checks Accesses at run-time and Prevents
Forbidden Ones.

481 ś Assigning instead of Comparing All assignments from locations not having the re-
quired guarantees are prevented by UMLsecRT.

486 ś Comparison of Classes by Name As UMLsecRT does not rely on names, malicious
classes loaded due to comparison by name cannot
perform accesses they do not have the rights for.

491 ś Object Hijack Using Cloneable As UMLsecRT uses the security requirements on
the level of members, classes injected using clon-
able cannot perform accesses they do not have the
rights for.

498 ś Clonable Class Containing Sensitive Data While usually security checks are implemented in
constructors, we check all accesses to sensitive
data.

499 ś Serializable Class Containing Sensitive Data As every access is checked, no sensitive data can
be accessed during a malicious serialization.

502 ś Deserialization of Untrusted Data Methods of injected malicious classes can only per-
form accesses they have the rights to.

586 ś Explicit Call to Finalize As explicit finalize calls threat integrity, only calls
from methods guaranteeing @Integrity are en-
forced.

829 ś Functionality from Untrusted Control Sphere Also for external functionality, compliance with
specified security requirements is enforced at run-
time.
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analysis tools, the examples for CWE470 end as soon as a class has been loaded based on external
data. The same applies to the other CWEs considered in Juliet.

At run-time, we cannot change the underlying implementation of a software system to remove
exploits of weaknesses but have to mitigate the exploits. As we can perform checks as soon as
a class is loaded, we do not have to evaluate if we can detect the loading of a class based on
external data but if we can detect malicious actions this class performs after it has been loaded.
Here, we have three possibilities to consider malicious method calls as well as write and read
accesses to fields. While for CWE470 all three are possible, for other CWEs this is not the case.
For example, write accesses cannot be used to expose sensitive data as considered in CWE200.

For this reason, based on the Juliet test suite and our research on CWEs, we created exe-
cutable test cases to study the effectiveness of the run-time monitoring. Thereby, we consider two
kinds of test cases, positive test cases and negative test cases. Every positive test case contains
an exploit that has to be detected at run-time monitoring. In summary, we created test cases
utilizing the 13 CWEs shown in Table 9.1. For example, the violation shown in Listing 9.4 of the
running example is an instance of CWE829 utilizing CWE470 to perform an illegitimate method
call that leads to disclosure of data (CWE200). According to Listing 9.6, it is mitigated by the
call of a countermeasure. In this experiment, we always throw a SecurityException as soon as
a violation of Secure Dependency has been detected by UMLsecRT. In Table 9.2, this case is
used to test the secrecy case of a method call for the violation in the first row. Every negative
test case corresponds with a positive test case by covering the same language construct but not
containing a security violation, e.g., as the security annotations are consistent.

All test cases are around the size of this example and have been created wherever possible for
secrecy and integrity cases of field accesses and method calls. Our examples cover calls from and
to external libraries, reflective accesses to fields and methods, reflective instantiation of objects,
code injections into a Javascript engine as well as a deserialization attack. All in all, we specified
13 different kinds of tests with 37 expected security violations. For every expected security
violation, there is also an additional test case where the same action takes place but no security
violation is expected, giving us 74 test cases in total. All tests are available in our replication
package [251]. Table 9.2 gives an overview of the tests and which CWEs they address.

Results. While the specification of the test cases using UMLsecRT was straightforward and
UMLsecRT has been able to detect all expected security violations without getting a single
false positive, this was more challenging using the Java security manager. The results of the
experiment are shown in Table 9.2. A checkmark stands for successfully mitigated and a cross
for not possible to mitigate. In some cases not all cases make sense, e.g., the test case for CWE209
– Sensitive Information in Error Message cannot lead to a violation of integrity.

While UMLsecRT supports different kinds of security requirements, the standard Java secu-
rity manager does not support these. For this reason, we implemented the security checks using
the Java security manager without differentiating between the different security requirements.

The second general limitation of the Java security manager we observed is that it is not
possible to check field assesses. Accordingly, we consider all test cases with forbidden field
accesses as failed. An exception to this is reflective field accesses. However, here the Java
security manager only provides the possibility to check if the use of Java reflection is allowed for
the location the class has been loaded from but not to check against the security requirement of
the field. However, as some kind of security check can be expressed, we consider this as partly
successful. The same applies to method calls executed via Java reflection.

One main goal of UMLsecRT is to not only protect from attacks but also to mitigate security
violations caused by bugs within the implementation. Here, the granularity of the Java security
manager does not allow us to specify security checks within a single classpath entry. Last but
not least, the security manager only allows us to check invocations of methods that are under our
control but not if an external method invoked by us provides the expected security requirements.

To sum up, while the Java security manager can be effectively used to check incoming method
accesses originating from classes stored at a different classpath as the code we want to protect,
it provides not a sufficient granularity and expressiveness to enforce UMLsec security policies
at run-time. On the other hand, the proposed security policies can be effectively enforced at
run-time using UMLsecRT. Also, if the software system has been developed using UMLsec, there
is no additional effort included in enforcing the UMLsec security requirements.
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Table 9.2: Effectiveness of UMLsecRT and the Java security manager: X ś
mitigated, (X) ś partly mitigated, × ś not mitigated, N/A ś no test case

UMLsecRT Security Manager

Field Read Field Write Method Call Field Read Field Write Method Call
Kind of Action Exe-
cuted in the Test Cases

CWEs Secrecy Integrity Secrecy Integrity

1 A plugin accesses criti-
cal members of the host

200, 226,
486, 807,
829

X X X X × × X

2 Internal bug: Security
properties of source vi-
olated

200, 807 X X X X × × ×

3 Internal bug: Security
properties of target vi-
olated

200, 807 X X X X × × ×

4 Accidential assignment
to field but only read
rights

481, 807 N/A X N/A N/A N/A × N/A

5 Dynamic loaded class
accesses data

200, 226,
486, 807,
829

X X X X × × X

6 Injected JavaScript
code into the Rhino
engine

200, 226,
807, 829

X X X X × × X

7 Call printstack trace of
sensitive exception

200, 209 N/A N/A X N/A N/A N/A X

8 Reŕective access to crit-
ical members

200, 226,
470, 807

X X X X (X) (X) (X)

9 Call to finalize with in-
sufficient privileges

586 N/A N/A N/A X N/A N/A (X)

10 Cloning of a class con-
taining sensitive data

200, 498 X N/A N/A N/A × N/A N/A

11 Serialization of class
containing sensitive
data

200, 499 X N/A N/A N/A × N/A N/A

12 Replacing class at dese-
rialization

200, 807,
829

X X X X × × X

13 Unsecure method/field
in new library version

200, 327,
328, 807

X X X X × × ×

9.5.2 O2śApplicability of the Run-time Monitoring

To use UMLsecRT in practice, it is vital to be able to monitor real-world programs with rea-
sonable overhead and without facing issues, e.g., due to exceptions. Thus, the second evaluation
objective targets to confront UMLsecRT with different real-world applications. More specifically,
we aim at constituting which part of UMLsecRT is responsible for the overhead to what extend
and which programming constructs are problematic to monitor.

Setup. To consider both real-world programs as well as realistic program executions, we applied
the monitoring component of UMLsecRT to the DaCapo benchmark suite [252]. The DaCapo
benchmark is a benchmark suite which is actively maintained since 2006 and supported by
industry. In version 9.12 DaCapo consists of 14 real-world open source applications (the tomcat
benchmark is currently broken and therefore excluded by us [253, 254]) on which typical tasks
are executed. It, for instance, contains indexing of or search in large documents like the King
James Bible using Apache Lucene (luindex and lusearch) and XML to HTML transformation
(xalan). A list of the benchmarks is given in Table 9.3. As the majority of the monitoring code is
executed regardless of UMLsecRT annotations being present in the code or not, we do not need
to annotate the applications of the DaCapo benchmark to evaluate the overhead of UMLsecRT.

As part of this objective, we conducted two experiments. At first, we measured for every
DaCapo benchmark the time needed to finish execution both with and without monitoring. In
the second experiment, we profiled, which percentage of the DaCapo benchmark’s execution time
has been spent on which tasks, to learn about reasons for the expected slowdown.

Results. We have been able to monitor 10 benchmarks successfully and had problems on
3 benchmarks using jython or Geronimo. In these, a java.lang.VerifyErrorśInconsistent stack
height exception is thrown when the programs themselves use byte code instrumentation after
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Table 9.3: Benchmarks of the DaCapo benchmark used for the evaluation of
the run-time monitoring.

project characteristics execution time in ms
benchmark classes methods fields plain Java UMLsecRT slowdown

avrora 1,741 19,575 27,789 4,576 12,213 2.7
batik 2,121 66,734 350,799 4,195 14,145 3.4
eclipse 407 5,357 3,359 47,625 399,534 8.4
fop 1,204 29,814 86,919 2,137 15,749 7.4
h2 441 13,745 6,884 7,906 17,699 2.2
luindex 491 6,313 2,869 1,994 6,472 3.2
lusearch 491 6,313 2,869 3,839 15,967 4.2
pmd 644 35,606 49,432 4,138 13,595 3.3
sunflow 220 1,653 990 7,154 19,251 2.7
xalan 1,419 52,200 72,989 4,879 19,046 3.9

UMLsecRT performed changes. As this exception is also thrown if we insert only non-behavior-
changing code, the cause seems not to be UMLsecRT. Despite these 2 programs, there seem to
be no problems with monitoring real-world programs.

The execution times with and without security monitoring are denoted on the right of Ta-
ble 9.3. On average the execution with security monitoring is 4.1 times slower than without
security monitoring. If we look into the details of the different benchmarks we can see that
there is a notable difference in the slowdown between the different benchmarks. With a factor of
2.2, h2 has only a relatively small slowdown while the Eclipse-based benchmark has the biggest
slowdown with a factor of 8.4.

Figure 9.7 shows the distribution of time needed for central parts of UMLsecRT among
the benchmark executions. These are instrumenting the classes, checking security annotations,
creating new annotation objects, representing members and their annotations, as well as the
retrieval of the stack corresponding to the current member. The benchmarks in the figure are
sorted by their slowdown with the benchmark with the highest slowdown on the top. We can
see that the slowdown does not directly depend on a single activity. On average, 56% of the
slowdown is due to the instrumentation of the loaded classes, 2.7% for checking the security
annotations, 5.4% for creating new annotation objects, and 35.9% for stack retrieval. However,
there are huge differences between the individual projects. Whilst analyzing the data, we can
make out two groups, one mainly spending time for the retrieval of the stack and one where the
instrumentation of the classes takes the most time.

At looking closer into the execution times, we notice that the projects with the lowest over-
head are the ones running the longest already in the unmonitored execution. An exception to
this is Eclipse, where the OSGi classloader and the structuring into plugins cause a high instru-
mentation overhead. A second exception to this is fop, here the high instrumentation overhead
due to the many classes in combination with the short run-time of the benchmark leads to a
high slowdown. The very high instrumentation overhead for batik can be explained by the ex-
cessive amount of fields that are all checked at classloading and many methods that have to be
instrumented. The same applies to fop, pmd, and xalan. All in all, it seems like the slowdown
is decreasing with the execution time. This and the average static instrumentation overhead
of 56%, indicate that UMLsecRT has a lower slowdown for long-running applications than the
measured average slowdown.

9.5.3 O3śUsability

The possibility to adapt the design-time models based on the observations at run-time allows
developers to easily study violations that have been observed and mitigated. To study the
usability of the adaption for the investigation of security violations, we performed a user study
and asked the participants for their opinion.

Setup. In our user study, we introduced the Eclipse secure storage, explained in detail as
the second case study in Chapter 15, to the participants. Afterward, we showed them three
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Figure 9.8: Usability of representations of a software system for the investi-
gation of a security violation.

representations of a security violation caused by an Eclipse plugin executing an implementation,
comparable to the one shown in Listing 9.4, in a start-up action. The first representation was the
stack trace of a security exception that has been thrown at the beginning of the get(String,String)
method of the Eclipse secure storage. The second representation was the generated deployment
diagram, comparable to Figure 9.4, and the third one the generated sequence diagram, com-
parable to Figure 9.5. For all three representations, we asked the participants to identify key
aspects of the security violation. Next, we asked the participants to write down the benefits and
disadvantages of all representations. Finally, the participants had to rate the usability of the
different representations for the investigation of a security vulnerability on a scale from one for
not useful to five for very useful.

In total, 25 experienced software developers participated in our user study. Of these devel-
opers, 56% had an experience of more than 10 years and another 28% had more than 5 years
experience. Two participants had less than 3 years of experience.

Results. In Figure 9.8, we show the results of the usability rating of our user study. While
the answers of the participants have low variance for the usability rating of the well-known
stack trace, the answers are more diverse for the proposed models. Both, the stack trace and
the sequence diagram, have been rated to be useful for the investigation of the shown security
violation with an average value of 3.52 and 4.08. The deployment diagram was rated with an
average rating of 2.96. While 36% of the participants rated the deployment diagram to be useful
for the investigation of a security violation the same amount of participants tends towards not
useful. For the stack trace and the sequence diagram, the majority of the participants rated these
representations to be useful (60% for the stack trace and 80% for the sequence diagram). While
the stack trace was mainly (11 votes) rated with a usability rating of 4, the sequence diagram



9.6. Threats to Validity 171

got as many ratings for very useful (rating of 5). In addition, the sequence diagram got, with 9
votes for a usability rating of 4, nearly the same amount of votes as the stack trace got. Only
based on the votes, we can conclude that the participants of our study have a diverse impression
of the shown deployment diagram but still see some use in it. The well-known stack trace is seen
as being useful, but the votes for the sequence diagram are even more positive.

When we look into the benefits and disadvantages identified by the participants of our survey,
we can see some trends. The stack trace is frequently rated as a well-known structure that is
linked to the code but does not provide very detailed information regarding the security violation.
Also, the deployment diagram does not provide detailed information but is rated as a very simple
entry point that is also suitable for non-technical stakeholders. Also, the sequence diagram might
be suitable for non-technical stakeholders. Many participants agreed on the sequence diagram
giving a very detailed description of the security violation but at the cost of readability for larger
violations. Also, the models might require trained personal for productive use. In summary,
many participants commented that for them the integration of all representations would be the
best. While this was not explicitly given as an option to the participants, this reflects the
practices at developing a software system using the proposed GRaViTY approach.

In summary, the participants of our case study rated the sequence diagram as the best
representation for providing details about the detected security violation. However, for a practical
application, the integration of all representation seems to be the favorite of the participants. Here,
we have not shown to the participants that the deployment diagram and the sequence diagram
are already integrated as they are adoptions of the same model reusing the same elements. As
the sequence diagram uses methods as messages it provides the same integration with the code
like the stack trace and integration with the stack trace is straightforward.

In this evaluation, we showed that UMLsecRT can be used for effectively monitoring Java
applications for compliance to security requirements specified at design time. Furthermore, in
our evaluation of the applicability we have shown that depending on the program size there is
a huge initial overhead that relativizes with time. Accordingly, an efficient implementation of
UMLsecRT seems feasible for long-running programs.

9.6 Threats to Validity

While evaluating UMLsecRT, we identified threats to validity that we discuss in this section.
First, we discuss threats to the internal validity of our evaluation, and afterward, threats to the
evaluation’s external validity.

9.6.1 Internal Validity

For studying the effectiveness of our approach in detecting security violations (O1), we might
have not covered all relevant cases. Here, we used the Juliet Testsuite as a guideline for selecting
relevant security violations that can be detected using UMLsecRT. While there might be other
relevant weaknesses that could be detected and mitigated using UMLsecRT, we currently only
consider the selected ones as possible. If UMLsecRT is suitable to detect security violations due
to other weaknesses, will be subject of future works.

Regarding O2–Applicability, we successfully showed that it is possible to monitor for vulner-
abilities and breaches in real-world Java programs. However, we did not conduct the evaluation
based on security breaches that have been documented to be seen in the wild on real applications.
Nevertheless, as part of the first experiment regarding O1, we have shown that UMLsecRT is
suitable to detect real-world security violations in minimal examples.

The design of our user study (O3) did not allow the participants to interactively apply our
approach but was based on generated views on a security violation selected by us and presented
in a survey. Also, we asked to consider all three presented representations exclusively. These
design decisions for the user might affect the participants’ answers regarding the usability for
inspecting security violations.

9.6.2 External Validity

On the one hand, it might seem like annotating the whole code basis is a huge overhead and
might threaten practical applicability. However, large amounts of annotations are heavily used
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in industry, e.g., in the context of the Spring framework [255] or Jackson [256]. On the other
hand, most of the data needed by us has already been collected at thread modeling and can not
only be reused at low cost but even improved by our approach. The suitability and usability of
UMLsec to specify this information have been evaluated in different contexts. In a public report
of the EU project VisiOn [79], the pilots write to feel able to analyze complex aspects of privacy
and security [78]. In a comparison of models for data protection by Pierre Dewitte et al., the
CARiSMA tool used by us ranked the highest for tool support, indicating good applicability [257].

Regarding the performance of our implementation, we measured an overhead for monitoring
of 4.1x. While we have shown that the overhead for instrumenting the classes gets less relevant
for long-running applications there is space for improvement in the performance of the checks,
this threatens the applicability to real applications. This is mainly the retrieval of the UMLsecRT
stack for the current thread. Currently, this happens twice for every method call, when a method
is entered and when it is left. A possible solution could be to introduce a field to every class
holding the stack. For single-threaded applications this is simple, but if objects are shared
between multiple threads it gets more complicated.

The relevance of the slowdown could be reduced if, comparable to Bodden et al. [258], only
the critical core parts of an application are monitored. Here, again the models used in UMLsecRT
could be utilized to identify these parts.

Another possibility to implement UMLsecRT is to extend the existing Java annotations to
be used with aspects [259]. A drawback of this approach is that the monitoring will be part
of the target program. Also, the steering of a monitored application is might not possible in a
sophisticated manner as the aspects always run on the application level. Apart from that, this
has the immanent security risk that an attacker gets to know that UMLsecRT aspects are part
of the program and uses reflection to deactivate or, even worse, taints them.

An external threat to the validity of our user study is the limited number of participants that
might not result in generalizable results for other groups of participants. Nevertheless, the user
study indicated good usability of the adapted system models for investigating security violations.
The usability from the user perspective can be studied in detail in future works.

9.7 Conclusion on the Run-time Security Monitoring

In this chapter, we introduced an approach for coupling model-based security analyses with the
code level, lowering the effort needed for annotating the code base and supporting round-trip
engineering by providing feedback into the models.

The approach supports reverse engineering of models from code and synchronization of se-
curity annotations in model and code as well. Reaction to detected security issues is supported
by passive reactions like call trace logging or actively by providing modified return values to
protect real application data. Round-trip engineering is supported both by feeding additional
associations monitored during execution back into the model as well as automatically generat-
ing sequence diagrams of attacks to support developers in investigating attacks with graphical
support and related to the model. Thus, software system evolution detection is also tackled.

We introduced UMLsecRT by realizing support for checking secure call dependencies, by ex-
tending the realization Secure Dependency for the UMLsec extension which could only be checked
statically (and thus partly) by now. Our approach is supported by a prototypical implementa-
tion. We realized support for the source code level by utilizing the Java security annotations
introduced in Section 6.4. Run-time monitoring is provided by the UMLsecRT Java agent, while
synchronization of model and code is realized using triple graph grammars.

We applied our approach successfully to the iTrust EHR system and the Eclipse Secure Stor-
age. Details on the application to Eclipse Secure Storage are shown in Chapter 15, in which
we discuss the application of the GRaViTY approach to two case studies. Also, we evaluated
UMLsecRT in terms of effectiveness and applicability against real CWEs and DaCapo bench-
mark. Results show that UMLsecRT can be used in realistic application scenarios. However,
during analyzing the evaluation results, we identified potential for additional research.

Future work can primarily target a more efficient implementation to reduce the current moni-
toring overhead and thus increase the applicability in real-world environments. Apart from that,
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the evaluation can be expanded by both supporting additional security requirements and evalu-
ate off-the-shelf applications having actual security issues. Also, the applicability of UMLsecRT
to other domains, like safety or real-time processing guarantees, can be investigated.
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Chapter 10

Security-aware Refactoring of

Software Systems

This chapter shares material with the FASE’2018 publicationłControlling the Attack Surface of
Object-Oriented Refactoringsž [144], the PPPJ’2015 publication łIncremental Co-Evolution of
Java Programs based on Bidirectional Graph Transformationž [129], and the TTC’2015 publica-
tions łObject-oriented Refactoring of Java Programs using Graph Transformationž [128] and łA
Solution to the Java Refactoring Case Study using eMoŕonž [129]

In the previous chapters, we discussed the development of software systems using a model-
based security engineering approach. As part of this approach, we considered the synchronization
of changes among all artifacts of the software system as part of incremental software development.
Such changes do not only occur during development but also at the maintenance of the software
system after initial development.

Maintaining software systems over a time is challenging. Due to continuous changes in the
software system, it is prone to structural decay which might give rise to anti-patterns [20].
Anti-patterns qualify architectural decay in the large, involving several classes spread over the
entire program and result in a higher effort for maintenance [12]. Also, there is the widespread
assumption that software systems prone to many anti-patterns are more likely to contain vul-
nerabilities [260]. The reasoning behind this assumption is that such software systems are more
challenging to understand and therefore to maintain. As a consequence, more errors are made,
including errors that lead to vulnerabilities.
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Design Model

Implementation Model

Java

Program Model

Security Checks
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Security 
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Figure 10.1: Location of refactorings in the overall concept.

Refactorings are a common measure to mitigate the effects caused by anti-patterns and to
improve the quality of the implementation [17]. However, as refactorings lead to changes in the
software system, they might affect security requirements as studied in the previous chapters.
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As shown in Figure 10.1, refactorings interact with the security requirements specified on the
design-time models and source code. For investigating the impact of arbitrary changes on a
software system’s security requirements, in Section 8.6, we introduced security violation patterns
that can be executed to check changed parts of a security system for security violations. While
this allows detecting security violating changes efficiently, their mitigation has to be performed
manually or the change has to be undone which might not always be possible. In the best case,
we can investigate changes before applying these to the software system. Accordingly, we have
to study the interaction of refactorings with security requirements and have to find means to
prevent refactorings from negatively impacting security. We answer our fourth research question
in the context of object-oriented refactorings.

RQ4 How do changes within a software system affect its security compliance, and how can these
effects be handled?

The key idea is that whenever a developer applies a refactoring using our approach, not only
the behavior but also the software system’s security is preserved. For this reason, we have to
study the interaction between refactorings and security requirements. To study this interaction,
we have to formalize refactorings first. This formalization builds the basis for studying the effects
of refactoring systematically and incorporating security-preserving constraints. Accordingly, the
research questions of this chapter are as follows.

RQ4.1: How can behavior-preserving refactorings be specified on a formal basis and this speci-
fication be used for executing the refactorings?

RQ4.2: How do refactorings interact with security requirements, and how can malicious inter-
actions be prevented?

In what follows, we first give a brief introduction to object-oriented refactorings in Sec-
tion 10.1. In Section 10.2, we introduce our formalization of behavior-preserving refactorings and
how these can be applied to a software system. Finally, in Section 10.3, we study the interaction
of refactorings with a software system’s security requirements and show how security-preserving
refactorings can be specified.

10.1 Background on Object-Oriented Refactorings

Opdyke was the first to propose refactoring as a countermeasure for the negative consequences
of software evolution, by defining 23 program restructuring rules in a human-readable form [16].
Fowler expanded this catalog of refactorings (by retaining its informal nature) in his seminal
work [17], which serves as the de-facto standard by now. Guided by such refactoring catalogs,
software systems are restructured manually by applying the described refactorings.

For example, the iTrust system has been developed as a class project over 25 semesters.
Between the semesters, among others, the teaching assistants refactored the iTrust implementa-
tion through manual restructurings for preparing a more easily extensible version for the next
semester’s class [50]. An example of a restructuring, performed after the summer term of 2009,
is the relocation of test cases that do not access iTrust’s database to their own classes. By doing
this, the initialization of the database has been avoided for these test cases, and as a consequence,
a significant speedup has been achieved. In this case, the benefit of the refactoring was twofold.
First, an unnecessary initialization could be avoided by reducing the coupling. Second, if a de-
veloper works on the relocated test cases, she does not have to care about this initialization of
the database and possible interactions, which eases the work.

While refactorings as described before are often performed manually, tool support has been
developed to assist at refactoring. Most recent refactoring implementations usually rely on
precondition-based program transformation rules directly applied to the abstract syntax tree
(AST) [61]. Nevertheless, the complex nature of those rules, including an interplay between
syntactic pattern matching at AST level and semantic constraint checking of properties that
crosscut the AST, still makes refactorings prone to potentially produce erroneous results [62].

To tackle the inherent problems of recent refactoring implementations operating at the AST
level, graph-based program transformation has been proposed as a promising alternative for
concisely and formally specifying and implementing OO refactoring rules in a comprehensive



10.2. Formalization of Object-Oriented Refactorings 179

way [23, 133, 142, 135, 138, 36, 136]. Here, the program under consideration is transformed into
an abstract and custom-tailored program graph representation that essentially

(i) defines a restricted view on the AST containing only relevant high-level OO program entities

(ii) and adds additional cross-AST dependencies making explicit (static) semantic information
being crucial to avoid behavior-scrambling refactorings [137, 135, 138, 141, 139].

On this basis, refactorings are formalized in terms of endogenous transformation rules at
a program-graph level [138, 36]. However, for a graph-based program refactoring approach to
finally become established in practical tools, seamless integration and co-evolution of program
source code and the accompanying program graph representation are required.

10.2 Formalization of Object-Oriented Refactorings

Modern Java IDEs aim at assisting object-oriented software development workflows with con-
tinuously interleaved co-evolution steps of program editing and program refactoring. Program
editing usually comprises manually performed program changes applied by a programmer at the
source code level. In contrast, refactorings consist of behavior-preserving program restructuring
rules with complex preconditions, usually formulated over an appropriate program abstraction.
However, an example of behavior-preserving manual restructuring is the teaching assistant re-
structuring the iTrust system.

To integrate both steps into a comprehensive program evolution framework, we present a
graph-based approach for incremental co-evolution of Java programs. Our approach is based
on the concise graph-based representation of Java programs in terms of the program model in-
troduced in Chapter 5. On this basis, a precise formal specification of object-oriented program
refactorings can be defined in terms of endogenous graph-transformation rules. To propagate
the changes performed by a refactoring on the program model into the software system’s imple-
mentation, we use Triple Graph Grammars (TGG) for automated incremental synchronization
between a program model and the corresponding source code, as discussed in Section 6.2.

Based on three refactoring operations, namely Create Superclass, Pull-Up Method, and Move
Method, we illustrate the applicability of graph-based program refactoring and the incremental
synchronization as a basis for a comprehensive co-evolution methodology for Java programs. In
our experimental evaluation, we compare our approach with the refactoring implementation of the
Eclipse IDE1, uncovering a case that is handled incorrectly by Eclipse but handled correctly by
our technique. The experiments show that our framework builds a promising basis for designing,
formalizing, and implementing existing and novel OO refactorings for Java-like programming
languages comprehensively.

In what follows, we first discuss in Section 10.2.1 the challenges in refactoring Java pro-
grams in general but also especially using formal approaches. Afterward, in Section 10.2.2, we
introduce the specifications of three refactorings using the notation of graph transformations.
In Section 10.2.3, we discuss the propagation of the changes made by refactoring application
into a software system’s implementation as part of the software system’s co-evolution using the
TGG transformation presented in Chapter 6. A prototypical implementation of the discussed
refactorings is presented in Section 10.2.4. In Section 10.2.5, we evaluate the proposed refac-
toring approach. Finally, we discuss threats to validity in Section 10.2.6 and conclude on our
formalization of OO refactorings in Section 10.2.7.

10.2.1 Refactoring of Java Programs

In this section, we illustrate challenges arising during the evolution and maintenance of Java pro-
grams, namely the erosion of a software system’s implementation [12]. To overcome the negative
effects of code erosion, object-oriented refactorings have been proposed. Refactorings comprise
a methodology for incrementally maintaining and improving high-level structural properties of
continuously evolving objected-oriented programs while preserving their observable behaviors.

As illustrated by the restructuring example on iTrust in Section 10.1, refactoring aims at
restructuring a software system’s behavior without changing its external behavior to improve

1Website of the IDE: https://www.eclipse.org

https://www.eclipse.org
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the software system’s structure or other non-functional aspects, e.g., execution times as in the
concrete example. At refactoring a software system in terms of manual restructuring operations,
developers have to constantly deal with reasoning whether the desired change is possible without
altering the behavior or even ending in a not compiling or not executable state. In the concrete
case, for every method included in the test suite, it had to be judged whether the method can
be executed without the database running. This reasoning about the applicability of planned
restructuring can get arbitrary complex and challenging.

At the development of a software system, program evolution usually happens in an ad-hoc
manner in terms of small and local edits on certain parts of the source code, whereas subsequent
program maintenance steps consist of a predefined set of arbitrary complex precondition-based
program transformation rules, specified on an appropriate abstraction of the concrete program
such as an Abstract Syntax Tree (AST) [61]. However, using the AST representation as a basis
for the design and application of program refactoring rules has two major drawbacks, namely:

1. Usually, object-oriented refactorings are applied to coarse-grained program entities, lim-
ited to the class–field–method level, whereas details of method implementations at the
statement-expression level are out of scope. As a result, the information represented in the
AST is usually far too fine-grained and contains many details being irrelevant for reasoning
about refactorings.

2. To reason about behavior preservation of refactorings, additional (static) semantic infor-
mation, e.g., call dependencies among methods, has to be taken into account. Those
dependencies go beyond the pure syntactic structure of programs and, thus, massively
crosscut the tree hierarchy of the AST.

In this regard, graph-based program transformation has been proposed as a promising alterna-
tive to AST-based refactoring rules [133, 134]. When using graph-based program transformation,
the program is transformed into a restricted, more abstract, and thus custom-tailored program
model representation that

(i) only contains those program elements being relevant for object-oriented refactorings and,
thus, facilitates concise formalization of high-level program transformation operations, and

(ii) makes explicit additional semantic cross-AST (control and data) dependencies among meth-
ods and fields, being crucial to reason about behavior preservation of refactorings.

Based on this representation, program transformations are defined in terms of endogenous graph
transformation rules [36].

The general applicability of such a graph-based representation for Java programs in combi-
nation with graph transformation rules to express program refactorings has already been shown,
e.g., in [23, 138, 136]. However, those existing works leave open how to obtain a graph-based
representation from the source code of a given Java program and, conversely, how to propagate
changes applied to that graph presentation back into the source code.

As our running example illustrates, Java programs continuously undergo interleaved edit
operations on the source code and consecutive maintenance steps in terms of refactoring rule
applications. Hence, there is a strong necessity for a comprehensive graph-based program refac-
toring framework to include an automated mechanism for incrementally synchronizing changes
both of the source code, as well as its respective program model representation to keep both
views consistent. In particular, an appropriate synchronization mechanism must be bidirectional
in the sense that arbitrarily interleaved changes in terms of source code edits, as well as in terms
of program model transformations are continuously propagated between both representations in
a consistency-preserving and automated manner.

Here, we employ Triple Graph Grammars (TGG) [158], a declarative way of expressing bidi-
rectional graph transformation rules, to facilitate incremental synchronization between the AST
and the program model representation of evolving Java programs. Our implementation is based
on eMoflon, a graph-transformation engine incorporating support for TGG [160], and discussed
in detail in Chapter 6.

In the next section, we show how to formalize refactorings using graph transformation rules.
Afterward, we solve the open problem of propagating changes made by refactoring operations
into the implementation through using the bidirectional exogenous graph transformation rules
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«Interface»

Serializable

PatientBean

 - firstName: String [1]

 - lastName: String [1]

 - bloodType: BloodType [1]

 + getFirstName(): String

 + getLastName(): String

 + getFullName(): String

 + getBloodType(): BloodType

 + setBloodType(  in bloodType: BloodType): void

 + setBloodTypeStr(  in bloodType: String): void

PersonnelBean

 - firstName: String [1]

 - lastName: String [1]

 - specialty: String [1]

 + getFirstName(): String

 + getLastName(): String

 + getFullName(): String

 + getSpecialty(): String

Figure 10.2: Class diagram showing an excerpt of the PatientBean and
PersonnelBean.

introduced in Chapter 6 to formalize the correspondences between Java source code and its
graph-based abstraction concisely.

10.2.2 Program Refactoring based on Graph Transformation

Program models, such as our program model introduced in Chapter 5, are designed to contain
sufficient information for reasoning about particular program transformation scenarios such as
refactorings. To this end, program models provide an appropriate abstraction layer for an intu-
itive and precise specification of program modifications using declarative graph transformation
rules. Here, the declarative nature of a rule means that it only describes preconditions (patterns)
under which the transformation should be executed and how the expected result is supposed to
look like but leaves open how to actually check and execute those rules on a given input program.

As already mentioned in Section 10.2.1, object-oriented refactorings are an ideal example
for predefined program transformation operations which can be effectively specified by program
model patterns on the type graph. Those graph patterns are supposed to identify all places
in a program that may be refactored. Moreover, graph transformation rules further comprise
specifications of the actual program modifications corresponding to refactoring operations. The
theoretical framework of graph transformations provides a declarative, rule-based technique for
modifying graph-based models such as program models [142]. In particular, a graph transforma-
tion rule consists of a left-hand side (LHS) and a right-hand side (RHS), both constituting typed
graphs, i.e., program models in our case, conforming to a given type graph of the underlying
modeling language. In this thesis, we use the type graph introduced in Chapter 5 to specify
transformation rules that express refactorings. The application of a graph transformation rule
on a given input program model consists of

1. finding a match of the LHS within the given input program model, i.e., an occurrence of
the respective graph pattern specified by the LHS, and

2. transforming the input program model by replacing the match by an image of the RHS
which essentially imposes the deletion and creation of particular nodes and edges, thus
yielding the output program model.

In addition, the LHS and/or RHS part may contain negative application conditions (NAC),
i.e., graph patterns which are not allowed in the input and/or output graph, respectively, for a
successful transformation rule application. Intuitively, the LHS and RHS of a graph transfor-
mation rule can be conceived as preconditions and postconditions, limiting the applicability of
the graph transformation operation specified by that rule. Generally, the precondition has to
be fulfilled by a given input graph for the transformation to become applicable. Similarly, the
postcondition has to be fulfilled by the transformation’s resulting output graph. In what follows,
we show how this notation can be used to specify refactoring operations based on three examples.

Create Superclass Refactoring

The first refactoring considered by us is the Create Superclass refactoring [17]. For example, the
iTrust system contains different kinds of users. Among others, these are patients and personnel
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Figure 10.3: Schematic representation of a Create Superclass refactoring ś
Left-hand side and right-hand side.

such as doctors. In the implementation, data about patients is represented in terms of the
class PatientBean, which we already investigated in more detail in Chapter 9. Similarly, as for
patients, data about personnel is stored in a PersonnelBean. As shown in Figure 10.2, both
beans implement the Serializable interface but do not have a common parent in which shared
functionality could be implemented. The Create Superclass refactoring specifies the conditions
under which such a common parent can be created.

In general, Create Superclass is used to create a common superclass for a set of classes that
share a considerable amount of functionality [17]. This refactoring can be seen as the first step
towards an improved program structure. A new common superclass of these classes sharing
functionality is created, that can then be filled with shared data or functionality.

Figure 10.3 shows a schematic representation of how the Create Superclass refactoring is per-
formed, considering two starting situations in the program model. The black elements (without
additional annotations) appearing in both the LHS and the RHS, correspond to those entities
within a given program model whose matches are part of the rule context but remain unaffected
by the program model transformation. In contrast, red elements (annotated with --) in the LHS
(on the left in Figure 10.3 are deleted, while green elements (annotated with ++) in the RHS (on
the right in Figure 10.3) are created during rule application. The crossed-out blue edge in the
LHS represents a negative application condition. The patterns within cascaded boxes on both
sides are recurring patterns, i.e., those patterns might occur zero or more times in a valid match
(respectively output) of the rule. The nodes of the LHS and RHS graphs are identified using the
notational style name:type, where name is a unique identifier of an object at the level of program
instance entities and type is the node type in the type graph to which the object refers.

The semantic meaning of the two refactoring rules is as follows. The child classes either have
to have the same superclass in the program model or none of them has a superclass. From a
technical point of view, each Java class has a superclass except for java.lang.Object, which is
the uppermost parent of all classes. However, an explicit generalization of the class Object is
not necessary in Java programs.

In case the refactoring’s preconditions and postconditions (see below) are fulfilled, a new
class new_superclass will be created which becomes the superclass of the child classes in the
set classes, containing child1 and all classes that have been matched to childN (classes :=

[child1] ∪ childN). Note that a Create Superclass refactoring does not necessarily represent
a valid refactoring. It marks merely a part of the input program where it is looked for a possible
refactoring operation.

In addition to the conditions shown in Figure 10.3, the following precondition has to be
fulfilled for a Create Superclass instance:

– The classes contained in classes are implementing the same superclass. Note that classes
with no explicit superclasses reference in Java are implementing java.lang.Object.
However, specifying this superclass explicitly in the source code is a developer decision
that does not influence the conditions for Create Superclass.

Additionally, the result of a Create Superclass has to fulfill the following postconditions:

1. Each class in [child1] ∪ childN has an inheritance reference (parentClasses) to the
class new_superclass.



10.2. Formalization of Object-Oriented Refactorings 183

«Interface»

Serializable

PatientBean

 - firstName: String [1]

 - lastName: String [1]

 - bloodType: BloodType [1]

 + getFirstName(): String

 + getLastName(): String

 + getFullName(): String

 + getBloodType(): BloodType

 + setBloodType(  in bloodType: BloodType): void

 + setBloodTypeStr(  in bloodType: String): void

PersonnelBean

 - firstName: String [1]

 - lastName: String [1]

 - specialty: String [1]

 + getFirstName(): String

 + getLastName(): String

 + getFullName(): String

 + getSpecialty(): String

UserBean

Figure 10.4: PatientBean and PersonnelBean after the application of a Create
Superclass refactoring.
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Figure 10.5: Model-transformation rules for Create Superclass refactoring
including preconditions.

2. In case the classes in [child1] ∪ childN had an explicit inheritance reference to a super-
class parent before the refactoring, their new superclass new_superclass has an inheritance
reference to this parent.

Figure 10.4 shows a UML class diagram focusing on the classes PatientBean and Personnel-

Bean, that has been extracted from the iTrust implementation after the application of a Create
Superclass refactoring. Their new superclass UserBean has been inserted by the refactoring but
does not contain any features, yet. Also, the two generalizations of UserBean have been added
by the refactoring. While the classes PatientBean and PersonnelBean have public visibility
in the extracted UML model, the UserBean is shown with default visibility as currently no
visibilities are considered in the specification of the refactoring. Also, the name of the created
superclass has not been discussed yet as well as the package containing this new class. All three
properties are not necessary for checking the applicability of the refactoring but are required
when it comes to propagating the changes into the source code.

Figure 10.5 shows a concrete realization of the two refactoring rules using the Henshin nota-
tion. In this notation, the LHS and RHS of the rules are combined into one single representation,
using a similar notation for create (labeled «create» instead of ++), delete (labeled «delete»

instead of ––) and NACs (labeled «forbid»). For simplicity, only rules considering exactly two
child classes are shown. In these two Henshin rules, we added conditions and patterns to handle
the properties neglected until now, e.g., regarding the visibility of the created superclass.

libraries: We can only create a superclass for classes that we can modify but not for classes that
are defined within a library. In the program model, the property tLib is set to true for
types that are defined within a library. Accordingly, the Henshin rules contain conditions
for assuring that tLib is set to false on all nodes representing types that will be changed
by the refactoring.
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Figure 10.6: Move Method refactoring specified as variability-based (VB) rule.

packages: The new superclass should be added to a package. While this could be handled
in the two rules identically, differentiating allows a more precise outcome regarding the
aggregation of coherent functionality. As the child classes can be in different packages and
the new class is common to all of them and not only to a single child class, in the case we
already have a superclass, the package this superclass resides in is selected. If we do not
have a common parent, this is not possible. In this case, we select randomly the package
of one of the child classes.

superclass name: In both rules, the desired name of the new superclass can be specified using
a name parameter specified on the rules. The name of the created superclass will be set
to this name specified before matching by the developer. Also, the NAC from Figure 10.3,
ensuring that the class to be created does not already exist, is detailed using this name

parameter. It is checked that no type with the name specified in the parameter (name) is
defined in the package to which the new class will be added.

default parent: Figure 10.3a specifies a Create Superclass refactoring for classes that do not
have an explicit superclass, meaning that these immediately extend java.lang.Object.
As in Java this does not have to be specified but can be specified, in the program model
this relation is made explicit in all cases. Accordingly, Figure 10.5a checks whether the
child classes extend java.lang.Object instead of the NAC specified in Figure 10.3a. This
is necessary as the next conditions require a differentiation between the two cases.

visibilities: At setting the visibility of the newly created class, we have to ensure that this
class is accessible for all child classes. If the child classes have an explicit parent, the new
superclass will get the visibility that is set for this parent. As the new class resides in
the same package as the old superclass, using this visibility, it is accessible for all child
classes. In case the child classes have no explicit parent, the new superclass is located in
the package of one of the child classes. In this case, we cannot easily give such a guarantee
for accessibility. If one of the other child classes is in a different package, public is required
while protected would be sufficient when all child classes are in the same package. For
simplicity, when there is no explicit superclass, the visibility public will be used.
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While the two discussed versions of the Create Superclass refactoring are very similar, it is still
necessary to specify these in two different rules. Also, our discussion has shown that there is the
possibility to specify additional more detailed versions of this refactoring. However, a user should
not have to understand all of these different versions of the refactoring and select the correct one.
Here, variability-based (VB) transformation rules allow specifying multiple transformation rules
that share common parts but also have individual parts within one transformation rule, reusing
the shared parts [261].

Figure 10.6 shows such a VB rule, that combines the two versions of the Create Superclass
refactoring. This rule has a base part that is always a part of the rule, and variable parts that
are specific to one of the two rules in Figure 10.5. The specific parts are annotated with presence
conditions, shown as dashed circles in the figure, specifying in which variant of this VB rule this
part is present. Thereby, the presence conditions can contain logical expressions over a set of
features. In addition, a feature model gives additional constraints over the features. In our case,
the rule has two features of which exactly one has to be selected. Here, the two features stand
for the two rules we have.

In the end, the two rules shown in Figure 10.5 can be derived from this VB rule. Therefore,
one has to iterate over all possible feature combinations concerning the VB rule’s feature model.
For each feature combination, the corresponding rule variant can be generated by selecting all
elements that are not annotated with a presence condition as well as those whose presence
condition evaluates to true for the current feature selection. For example, if we select the feature
object, we will get the rule for child classes having no explicit parent, shown in Figure 10.5a.
Accordingly, all elements annotated with object will be added to the rule variant, e.g., the
packages with the names java and lang or the attribute condition setting the expected name of
the old superclass to "Object". All elements annotated with parent will not be added to the
rule variant, e.g., the node representing the modifier of the old superclass.

When such a VB rule is applied to the program model, first, the base part of the rule is
matched. If there are matches for the base part, these matches are extended to all possible
variants of the rule. Accordingly, we get the same matches as we would match the two rules
shown in Figure 10.5. For each of the matches, the deletions and additions specified in the rule
variant can be performed. Accordingly, VB rules can be used to check the refactoring for all
possible variations of the rule and to execute one of the possible outcomes.

Although Create Superclass is a refactoring that only requires a few preconditions, we include
this operation to demonstrate that our synchronization mechanism can cope with newly created
class nodes in the program model during backward transformation. Since those endogenous
refactoring transformation rules only modify the program model (in the first place), we do not
(yet) require bidirectional synchronization for this step.

Pull-Up Method Refactoring

In this section, we discuss the Pull-Up Method refactoring [17] as the second refactoring consid-
ered by us. When looking at the iTrust system after applying the Create Superclass refactoring,
shown in Figure 10.4, we notice that the PatientBean and PersonnelBean contain similar func-
tionality. For example, both contain a method (getFullName) to calculate the full name from
the first and last name of a patient or personnel. As the idea of creating a shared superclass for
these two classes was to implement shared functionality there, it is a good idea to implement the
currently duplicated functionality in this new superclass. By performing such a restructuring,
the amount of duplicated code can be reduced and the risk for independent evolution of code
duplicated can be lowered. The Pull-Up Method refactoring specifies how such a restructuring
can be performed systematically and which conditions for applicability have to be considered.
For example, the proposed pull-up of getFullName is not immediately possible, as this method
has to access the getters getFirstName and getLastName that are defined on the child classes.

As motivation for the challenges that come with this refactoring, consider the synthetic Java
program in Listing 10.1. The Java program initially consists of four classes: A, B, C and E,
assuming that all classes reside in the same package. The classes A, B and C are in the following
inheritance relation:

• Class B extends class A.

• Class C extends class B.
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1 public class A {

2 int mult = 3 ;

3

4 public int m(int a) {

5 return mult * a;

6 }

7 }

8

9 public class B extends A {

10 int mult = 2;

11 }

12

13 public class C extends B {

14 public int m(int a){

15 return mult * a;

16 }

17 }

18

19 public class E {

20 public void main (String [] args) {

21 A a = new A();

22 System.out.println(a.m(2)); // output: 6

23

24 C c = new C( );

25 System.out.println(c.m(2)); // output: 4

26 }

27 }

Listing 10.1: Example Java program containing the possibility for a Pull-Up
Method refactoring.

In this inheritance hierarchy, methods m and member variables mult are defined as follows:

• Class A implements a method m which receives as argument an integer value a and returns
the value resulting from multiplying this value with the value 3 of the member variable mult.

• Class B inherits the implementation of method m from class A, but redefines the value of
mult to 2.

• In contrast, class C overrides the implementation of method m, but (accidentally) uses the
same method body as the one in class A.

While the two implementations of m are clones, both implementations of method m return
different values as C.m accesses the redefined value of the member variable mult in class B. These
differing behaviors are demonstrated by the main method in class E, calling both A.m and C.m

with the same parameter value 2 which produces different results.
As an evolution step, assume a developer to insert a further class D, shown in Listing 10.2,

which also extends class B and overrides the implementation of method m, similarly to class
C. To demonstrate the execution of the newly inserted method implementation, a correspond-
ing call of D.m has been added to E.main. While D.m uses an alternative way of computing
the multiplication, the method body of D.m implements the same functionality as C.m. As a
result, we have two sibling classes implementing the same methods with equivalent behaviors.
Hence, as a consequence of program evolution, the source code may exhibit undesirable decay,
e.g., duplicated/redundant code in this example, which potentially obstructs maintenance and
comprehensibility throughout subsequent development steps.

For instance, as motivated before, the Pull-Up Method refactoring proposed by Fowler in [17]
is concerned with situations such as observed for the example in Listing 10.2 after inserting class D.
In particular, developers may execute a Pull-Up Method refactoring in a consecutive maintenance
step to eliminate code duplication. As the concurrent implementations of method m in the
classes C and D are semantically equivalent, it is possible to move one of their implementations
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1 . . .

2 // class D has been added

3 public class D extends B {

4 public int m(int a){

5 int tmp = 0;

6 for (int i = 0; i < mult ; i ++){

7 tmp += a ;

8 }

9 return tmp ;

10 }

11 }

12

13 public class E {

14 public void main (String [] args) {

15 A a = new A();

16 System.out.println(a.m(2)); // output: 6

17

18 C c = new C();

19 System.out.println(c.m(2)); // output: 4

20

21 D d = new D();

22 System.out.println(d.m(2)); // output: 4

23 }

24 }

Listing 10.2: Example Java program after evolution.

1 . . .

2 public class B extends A {

3 int mult = 2;

4

5 public int m(int a){

6 int tmp = 0;

7 for (int i = 0; i < mult ; i ++){

8 tmp += a ;

9 }

10 return tmp ;

11 }

12 }

13

14 public class C extends B {

15 }

16

17 public class D extends B {

18 }

19

20 public class E {

21 public void main (String [] args) {

22 A a = new A();

23 System.out.println(a.m(2)); // output: 6

24

25 C c = new C();

26 System.out.println(c.m(2)); // output: 4

27

28 D d = new D();

29 System.out.println(d.m(2)); // output: 4

30 }

31 }

Listing 10.3: Example Java program after the application of a Pull-Up Method
refactoring for method m.
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Figure 10.7: Transformation rule of a Pull-Up Method refactoring

into superclass B and to erase the redundant code from C and D. The result of this refactoring
operation is shown in Listing 10.3.

For such program transformations to constitute correct refactorings, several preconditions
must be met to ensure behavior preservation. For instance, before applying Pull-Up Method, it
has to be ensured that any call to the affected method is resolved in exactly the same way before
and after the refactoring. In our example, the results of all three calls to the refactored method
m in E.main yield the same results as before the refactoring. In contrast, consider the slightly
adapted implementation of E.main in Listing 10.4, where the Pull-Up Method refactoring is not
executed yet. Here, method m is called on object b of type B instead of D. In this case, a pull-up
of method m from C to B must be neglected as it would alter the result of calling m on b as m

would access a different field after the refactoring.

1 public class E {

2 public void main (String [] args) {

3 A a = new A ();

4 System.out.println(a.m(2)); // output: 6

5

6 B b = new B();

7 System.out.println(b.m(2)); // output: 6

8

9 C c = new C();

10 System.out.println(c.m(2)); // output: 4

11 }

12 }

Listing 10.4: Example Java Class Containing an Access Prohibiting a Pull-Up
Method (PUM) Refactoring

An example of a graph transformation rule for the Pull-Up Method refactoring is shown in
Figure 10.7 using the same notation as for the Create Superclass refactoring. This rule is a
simplified version of the Pull-Up Method refactoring rule specified on our type graph.

To summarize, the rule in Figure 10.7 is interpreted as follows: For a Pull-Up Method refac-
toring to be applicable on a given input program model, there must exist a superclass with at
least one (but possibly more) subclass(es) child1...N, each having a method represented by the
corresponding method definition(s) definition1...N. Those definitions are supposed to refer
to method implementations in sibling sub-classes, but having equivalent functionality.

In general, checking whether a given set of methods implement equivalent functionality, is
undecidable and, consequently, out of scope of preconditions for object-oriented refactoring rules.
In contrast, declaring a given set of sibling methods as equivalent is usually obliged to the
developer before invoking the refactoring operation. Hence, we require those methods matched
by definition1...N to share the same signature signature. The NAC edge between parent
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Figure 10.8: Program model before and after a Pull-Up Method refactoring.
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Figure 10.9: Excerpt of the program model of the program in Listing 10.4.

and signature in the LHS further ensures that no method with the same signature already
exists in the parent which would, otherwise, obstruct the pull-up operation.

When executing this transformation rule, all method definitions (including all their con-
nections) except for one are deleted from the sibling sub-classes, and the preserved method
definition1 (together with its signature) is moved (pulled up) into the class parent.

Figure 10.8 shows a concrete example for an application of the Pull-Up Method rule to
the input program model corresponding to the source code in Listing 10.2. For convenience,
Figure 10.8 only contains a relevant excerpt of both program models.

As the LHS of the refactoring rule in Figure 10.7 matches the input program model in
Figure 10.8a, the Pull-Up Method rule is applicable to this program. As a result, one of the
method definitions is deleted and the definition and signature of the common method m are
attached to the common superclass B. The resulting output program model shown in Figure 10.8b
corresponds to the source code in Listing 10.3.

When considering the modifications shown in Listing 10.4, cf. the corresponding program
model excerpt in Figure 10.9, the refactoring rule is not applicable anymore on this program
model. To simplify the shown program model excerpt, instances of TAccess are visualized as
an edge labeled access from the source to the target of the access. This inapplicability is
because that method B.m is accessed now, which is inherited from the class A. A pull up of m

from class C and D to class B, therefore, changes the program behavior as m accesses different
instances (and thus values) of field mult before and after the pull-up operation. Such a potential
violation of behavior preservation is not directly detectable on a plain AST, whereas it is explicitly
recognizable by investigating the additional access edges in the program model.
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Figure 10.10: Model-transformation rule for Pull-Up Method refactoring in-
cluding preconditions.

Again, the graphic representation of the of Pull-Up Method rule in Figure 10.7 does not include
all necessary preconditions but rather covers a simplified version for convenience. However, the
missing parts may be represented similarly. For example, as illustrated by the case of an infeasible
Pull-Up Method in Listing 10.4 (Figure 10.9, respectively), the superclass may inherit a method
with a similar signature as the one being pull-upped. This may also lead to altered program
behavior if the inherited method is called from another class. As this inherited method is mapped
to a different signature object within the program model, we have to explicitly handle this case
by an additional graph pattern. The example in Listing 10.4 shows that additional AST-crossing
edges for representing static semantic dependencies among program entities are necessary to
neglect unsound refactorings.

Figure 10.10 shows a Henshin rule for the Pull-Up Method refactoring including such addi-
tional application conditions:

libraries: As for the Create Superclass refactoring, only classes that do not come from a library
can be modified (tLib = false).

accesses: The preserved method definition is not allowed to access any other member of the
class it is defined in before the refactoring («forbid#1»). This NAC is necessary as these
members are not accessible from the superclass.

overriding: The violating access from the example is prevented by NAC «forbid#2». In the
end, we can get this violation every time a superclass of parent defines a method with
the same signature (signature) as the one to be pulled upwards (definition0). Due to
polymorphism, the child’s superclass (parent) could always be used in the context of its
own superclasses. Thereby, this usage might contain an invocation of the overridden method
realizing signature. As polymorphism is not statically analyzable, we forbid all Pull-Up
Method refactorings in which the method to be pulled upwards overrides an implementation
from a superclass of parent. As this is semantically equivalent to overriding a method with
the same signature, we can avoid specifying a type-hierarchy in the rule.

already implemented: The third NAC in the rule is the one already considered in Figure 10.7.
This NAC is expressed identically in NAC «forbid#3».

When applying the Pull-Up Method refactoring, it is not sufficient only to delete all im-
plementations of the child classes except one. For every deleted implementation, the incoming
accesses have to be redirected to the preserved method definition. This redirect is expressed on
the lower right of the rule.
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Comparable to the Pull-Up Method refactoring, a Pull-Up Field refactoring can be specified.
As in Java fields hide fields of superclasses instead of overriding these as methods do, this
refactoring would require fewer preconditions. To be more precise, «forbid#2» would not be
necessary, as the original field would still be accessible by using the super qualifier of Java.

Move Method Refactoring

The last refactoring considered by us is the Move Method refactoring [17]. We conceive this
refactoring as an essential refactoring, as it has been shown that Move Method refactorings are
considerably effective in improving class responsibility assignment (CRA) [262] in flawed object-
oriented program designs [263].

An example application context for a Move Method refactoring on iTrust is given in Fig-
ure 10.11. This figure shows a program model excerpt focusing on the iTrust source code shown
in Listings 10.5, 10.6, and 10.7. These source code fragments show relevant parts of the imple-
mentation of consistency checks at storing an office visit in the iTrust system.

1 package edu.ncsu.csc.itrust.model.officeVisit;

2

3 public class OfficeVisitValidator extends POJOValidator {

4

5 public void validate(OfficeVisit obj) throws FormValidationException {

6 String patientMID = obj.getPatientMID ();

7 ...

8 errorList.addIfNotNull(checkFormat("Patient MID", patientMID ,

ValidationFormat.NPMID , false));

9 ...

10 }

11 }

Listing 10.5: Source code excerpt from the iTrust class
OfficeVisitValidator.

As soon as an office visit should be stored, the validate method of the OfficeVisitValida-
tor is executed to check the validity of the office visit entry. An excerpt of the relevant source
code is shown in Listing 10.5. Among others, this method contains a check whether the MID
of the patient meets the expected format. For this check the method checkFormat, defined in
the superclass of the class OfficeVisitValidator, is called. Among others, in this call, the
office visit object and the expected format as defined in the enumeration ValidationFormat are
passed to the method.

1 package edu.ncsu.csc.itrust.model;

2

3 public class POJOValidator {

4

5 abstract public void validate(T obj) throws FormValidationException;

6

7 protected String checkFormat(String name , String value ,

ValidationFormat format , boolean isNullable) {

8 String errorMessage = name + ": " + format.getDescription ();

9 if (value == null || "".equals(value))

10 return isNullable ? "" : errorMessage;

11 else if (format.getRegex ().matcher(value).matches ())

12 return "";

13 else

14 return errorMessage;

15 }

16 }

Listing 10.6: Source code excerpt from the iTrust class POJOValidator.

The implementation of the method checkFormat is shown in Listing 10.6. This method
reads a regular expression specifying the expected format and an error message from the given
instance of ValidationFormat. If the regular expression does not match, the error message
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1 package edu.ncsu.csc.itrust.model;

2

3 public enum ValidationFormat {

4

5 NPMID("[0 -8][0 -9]{0 ,9}", "1-10 digit number not beginning with 9"),

6

7

8 private Pattern regex;

9 private String description;

10

11 ValidationFormat(String regex , String errorMessage) {

12 this.regex = Pattern.compile(regex);

13 this.description = errorMessage;

14 }

15

16 public Pattern getRegex () {

17 return regex;

18 }

19

20 public String getDescription () {

21 return description;

22 }

23 }

Listing 10.7: Source code excerpt from the iTrust class ValidationFormat.
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Figure 10.11: Excerpt from the program model focusing on the iTrust source
code excerpts in Listings 10.6,10.7, and 10.5.



10.2. Formalization of Object-Oriented Refactorings 193

−−

−−

target:TClass

:TMethodSignature

signature

source:TClass

:TMethodDefinition

definition

signature
definitions

signatures

defines

signatures

target:TClass

:TMethodSignature

signature

source:TClass

:TMethodDefinition

definition

signature
definitions

defines

signatures

++

++

Figure 10.12: Model-transformation rule for a Move Method refactoring.

is returned otherwise an empty string is returned. The implementation of the enumeration
ValidationFormat is shown in Listing 10.7.

As the method checkFormat accesses besides methods from the Java standard library only
members from the enumeration ValidationFormat and even not a single member from its own
class, considering the CRA problem, moving this method to the enumeration could be a good
idea. The conditions for such a move operation to be behavior preserving are specified as part
of a Move Method refactoring.

Figure 10.12 shows the essential parts of a rule for Move Method refactorings defined on our
type graph, using the same notation as for the previous refactorings. The rule takes a source class
source, a target class target, a method signature signature, and a method definition realizing
the signature, deletes the containment arrow between source class and the pair of definition and
signature (red arrows annotated with --) and creates new containment arrows from the target
class (green arrow annotated with ++), only if such an arrow to the signature not already exists
before rule application. The latter precondition is expressed by a forbidden (crossed-out) arrow.
For a comprehensive list of all necessary preconditions, we refer to [68].

Besides preconditions, for refactoring operations to yield a correct result, it must satisfy
further postconditions to be evaluated after rule application, especially concerning accessibility
constraints as declared in the original program, i.e., member accesses like method calls in the
original program must be preserved after refactoring [23]. As an example, Listing 10.8 shows a
(simplified) postcondition for the Move Method rule using the OCL notation. The postcondition
is applied to every class member (TMember) in the program and checks whether the declared
accessibility of the member is at least as generous as required, based on the canonical ordering
private < default < protected < public. For the calculation of a class member’s required
access modifier, it utilizes the helper-function requiredAccessibility(TMember) [68]

context TMember
post : s e l f . tMod i f i e r . t V i s i b i l i t y >= r e q u i r e dA c c e s s i b i l i t y ( s e l f )

Listing 10.8: Postcondition of a Move Method refactoring concerning the
suitability of member visibilities.

For instance, if the Move Method refactoring is applied to POJOValidator, the method
checkFormat violates this postcondition, as the call originating from the method validate,
that is defined in a class from another package, requires accessibility public, whereas the de-
clared accessibility is protected. Instead of immediately rejecting refactorings like this Move
Method refactoring, we can use an accessibility-repair operation for each member violating the
postcondition which therefore causes a relaxation of the visibilities [144]. Such a repair operation
sets the violating visibility to the lowest required visibility. However, this repair is not always
possible as relaxations may lead to incorrect refactorings altering the original program semantics,
e.g., due to method overriding/overloading [68].

In contrast, imagine a refactoring that moves a method only having accesses from members
defined in one single class to this specific class. This refactoring would satisfy the postcondition
for any original visibility as the required accessibility becomes private, whereas it had to be at
least the default visibility before to allow access. In those cases, we may also apply the repair
operation, now leading to a reduction of the visibility.

Besides the refactoring being behavior preserving, the refactoring has to be possible, meaning
that all information accessed has to be accessible from the target class, too. This is not given
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Figure 10.13: Model-transformation rule for Move Method refactoring includ-
ing preconditions.

for every target of a move operation. Figure 10.13 shows a Henshin VB rule of a Move Method
refactoring that includes both, behavior-preserving constraints and constraints ensuring the move
to be possible in terms of compatible target classes.

The rule’s central part is the method definition (methodDef) and method signature (methodSig)
pair in the rule’s center. The definition represents the implementation of the method that
should be moved to a different class. The node sourceClass represents the class currently
defining the method and the node targetClass the class the method should be moved to. The
movement is expressed by deleting the references between the sourceClass and the method
(methodSig/methodDef) and adding these references for the targetClass.

For the movement of a method to be possible (but not necessarily behavior-preserving), some
conditions have to hold:

1. The source class and target class are not part of a library (tLib = false).

2. As template types only serve as a placeholder for concrete type specifications in variables,
the target class cannot be a template type («forbid»#template tName="T").

3. The target class does not already implement a method with the same method signature
(«forbid»#alreadyImplemented).

4. The method is not overridden or overriding another method («forbid»#overridden and
«forbid»#overriding).

5. There is no call from another class to the method through a sub-class of sourceClass

(«forbid»#synthetic).

Based on the presented conditions, in principle, possible moves of methods can be identified.
However, for a correct refactoring, the method has to be accessible from the scope of its original
location after the refactoring [17]. We consider three cases in which we can guarantee the
accessibility of the moved method. The fulfillment of already one case is enough to guarantee
reachability. We assign one feature of the VB rule’s feature model to every of the considered
cases. The patterns of every case in the rule are the ones annotated with the corresponding
features. The cases considered by us are:
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static: Static methods do not have an object as execution context. For this reason, static
methods can be moved to every class.

param: Parameters specify parts of a method’s execution context. For this reason, the instances
of the method’s parameters are accessible from the source class and the method can be
moved to the types of parameters.

field: As for parameters, through fields, the method stays accessible in its original context as
the method can be invoked on the field.

In this section, we have shown the formalization of three refactoring operations on the type
graph used in this thesis. Next, we discuss the application of these refactorings to Java programs
as part of the GRaViTY framework.

10.2.3 Co-Evolution due to Refactoring Application

While tailoring the graph-based representation of Java programs, one of the central questions is
how to determine an appropriate level of abstraction for the program model to meet the particular
program transformation scenario. In some cases, it may be even convenient to directly use the
original AST as a program representation. ASTs have the advantage that they contain a complete
representation of the syntactic elements of the program at any level of granularity. Moreover,
numerous tools provide out-of-the-box solutions to modify programs at the AST level [264, 265].
Furthermore, Eclipse and Java compilers have their own Java AST representation, too [266].
Using these tools, it is possible to synchronize the Java source code and its AST representation
without the risk of losing information.

Nevertheless, in application scenarios where the program modifications involve the analysis of
complex inter-dependencies, as shown in our refactoring examples, AST may suffer from being too
detailed for an efficient transformation specification. In those cases, a custom-tailored program
model representation such as the type graph presented in Chapter 5 is desirable. However,
transforming programs into abstract representations necessarily involves the loss of program
information which obstructs the backpropagation of changes corresponding to program model
transformations into the affected part of the source code and, vice versa, in case of source code
edits. Hence, an appropriate synchronization mechanism is required to incrementally ensure
consistency between both the source code and the program representation of Java programs. As
described in Section 6.2, bidirectional graph transformation provides such techniques.

In what follows, we discuss the suitability of this bidirectional graph transformation for
propagating the changes made by the three refactoring operations into the source code. The
suitability to update the program model in case of changes in the implementation has already
been discussed in Chapter 6.

Create Superclass Refactoring Changes made by a Create Superclass refactoring can be
propagated by our synchronization approach as packages, classes, and inheritance rela-
tions are expressed on the same level of abstraction in the implementation and the pro-
gram model. As no elements with abstractions, e.g., method definitions, are touched by
this refactoring, there is no risk for the loss of information. Accordingly, we can always
propagate Create Superclass refactorings from the program model into the implementation.

Pull-Up Method Refactoring For the Pull-Up Method refactoring, there is a risk that the
body of the method definition that has been pulled up is lost. However, the presented TGG
has been designed to preserve the bodies of method and field definitions. This property
has been discussed in detail in Section 6.2.2. Accordingly, the synchronization of changes
made by a Pull-Up Method refactoring is possible without issues.

Move Method Refactoring As for the Pull-Up Method refactoring, there is the risk for the
Move Method refactorings that the information about the body of the method definition
that will be moved is lost. For the same reasons as before, this risk is mitigated in the
TGG used for synchronization.

The next risk is that the implementation of the method cannot be adapted to the new
location, meaning that there can be errors in the way how the data used in the method
is accessed. Here, we have to consider two cases, static methods, and non-static methods.
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Figure 10.14: Component diagram of the refactoring implementation and
integration into GRaViTY.

As static methods cannot access data specific to objects, an adaption of the accesses is not
necessary and the propagation of these is possible. For non-static methods there might
be the need to adapt the method, e.g., if the method is moved to a parameter type, this
parameter has to be replaced by a parameter providing access to the previous owning
class. Such adaptions on the statement level cannot be specified on the program model
and therefore not be propagated by the TGG. The method would be propagated with an
unchanged method body, which eventually has to be adapted by a developer.

Such cases can be handled by refactoring implementations working on an AST or model
having similar granularity, e.g., the Eclipse refactoring implementation. By combining such
an implementation with our approach, we can benefit from both approaches. We can have
the detailed preconditions and postconditions of our approach together with the possibility
of detailed adaptions on the statement level.

To conclude, we can propagate all refactorings to the implementation without the loss of
information. However, for the Move Method refactoring there might be situations that require
additional changes by developers after the synchronization. For all other refactorings, no manual
changes are required.

10.2.4 Tool Support for the Application of Formalized Refactorings

Our implementation of the refactorings relies on the graph-transformation engine Henshin [25]
for the execution of the refactoring on the program model. Currently we support the refactorings
Pull-Up Method, Create Superclass, and Move Method. Figure 10.14 shows a component diagram
of our refactoring implementation. The refactorings are specified within the Refactorings com-
ponent as Henshin rules on the type graph of our program model. The Refactoring component
uses the Henshin transformation engine (Henshin component) to match possible refactoring op-
portunities and to execute refactorings. After the execution of a refactoring on the program
model, implementation of our synchronization in the PM TGG component is used to propagate
the changes into the MoDisco model and to generate the refactored source code from this model.
The refactoring implementation can be used in two ways:

API: The Refactorings component exports an API (IRefactorings), that allows us to match
and execute refactorings from Java applications. For each refactoring a isApplicible and
perform methods are implemented allowing us to check if a refactoring is possible and
behavior-preserving before modifying the program model. Afterward, the change can be
inspected before triggering the synchronization with the implementation.

UI: The Refactorings component extends the Eclipse IDE with graphical support for exe-
cuting refactorings. A developer can for example right-click on a method in the source
code and select to pull this method upwards. Then methods with the same signature in
siblings of the class defining the selected method are proposed to be pulled upwards, too.
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Figure 10.15: Presentation of a refactoring in the GRaViTY refactoring UI.

The applicability of the refactoring is checked and if applicable, the affected methods and
classes are shown to the developer as shown in Figure 10.15. Here, the developer selected to
pull the method getFullName upwards after the fields firstName and lastName as well as
their getters and setters have been pulled upwards to the parent. Otherwise, the developer
would have been informed about the inapplicability of the refactoring. After the developer
confirms her selection, the refactoring is executed.

The presented tool support allows developers to effectively refactor software systems as part
of the GRaViTY development approach.

10.2.5 Evaluation of the Refactoring Technique

To demonstrate the feasibility of our technique, we created an evaluation framework called Au-
tomated Refactoring Test Environment (ARTE) [128]. ARTE provides test cases consisting of

(i) input Java source code to be transformed into an equivalent program model,

(ii) one or more refactorings to be performed on the program model, and

(iii) the output Java program expected after performing the refactorings.

ARTE also supports negative test cases, where the given refactoring or chain of refactorings
should not be applied to the input program. In those cases, the refactoring implementation
under test should is supposed to detect some precondition to fail and to deliver a corresponding
message to the user.

Based on ARTE, we empirically studied the correctness of the refactoring application. Here,
we used a version of our tool prototype that has been presented in [129]. Technically, this ver-
sion differs in two aspects from the one presented in this chapter. First, JaMoPP [141] has
been used for parsing Java source code and was replaced by MoDisco to support newer Java
versions. Second, the presented graph patterns had been specified using the SDM notation of
eMoflon [267, 160] that has been replaced by Henshin rules. These are visually closer to the pat-
terns introduced in this chapter. Besides the readability of the rule specification, the SDM’s run
time performance in 2015th transformation tool contest on refactorings was rather weak [143],
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Table 10.1: Evaluation results for the refactorings.

Test Case Eclipse GRaViTY Refactorings
Refactoring Elements Success Success Duration in ms

1 csc 8 yes yes 48
2 csc 8 yes yes 46
3 pum 10 yes yes 211
4 pum 7 yes yes 44
5 pum 5 yes yes 45
6 pum 5 yes yes 44
7 csc 8 yes yes 50
8 csc 8 yes yes 46
9 pum 8 yes yes 46

10 pum 8 yes yes 45
11 csc 10 yes yes 26
12 pum 10 yes yes 289
13 pum 10 yes yes 46
14 csc+pum 5 yes yes 260
15 csc+pum 5 yes yes 286
16 csc 146 yes yes 149
17 csc 146 yes yes 960
18 23csc+24pum 48 yes yes 3185
19 pum 11 no yes 63

while Henshin performed in the comparable class responsibility assignment case of 2018 rather
good [268]. As both, Henshin and eMoflon built upon the formalism of algebraic graph transfor-
mations, the evaluation of the application’s correctness is transferable. In what follows, we first
introduce the setup of our experiment and discuss the results of the experiments afterward.

Setup. We manually specified our test input programs to cover the most interesting cases
regarding the refactoring operations Pull-Up Method (pum) and Create Superclass (csc). Most
of the test programs contain only a few classes and methods, representing a minimal positive
or negative example for a particular (set of) precondition(s) under investigation. In this way,
we mainly focused our experiments on assessing correctness as a refactoring implementation is
only practically relevant if it complies with a considerable amount of correctness criteria. In
this regard, we considered scalability and performance measures to be of secondary importance
in our setting. Although the test programs have been specified manually, they already existed
before we implemented our approach. In particular, our test cases cover all crucial preconditions
known from the literature. Those test cases constitute executable Java programs, although they
merely perform basic console output operations.

Results Table 10.1 summarizes the results for the test cases in ARTE and includes a compar-
ison to Eclipse regarding the correctness of the refactoring specifications. (Eclipse offers Pull-Up
Method for Java and Create Superclass can also be simulated by performing Extract Superclass
with no extracted elements.)

The current version of ARTE contains 9 test cases for Pull Up Method, 7 test cases for Create
Superclass and 3 test cases combining both refactorings. Each row in Table 10.1 represents one
test case, identified by its number. The first column shows the kind of refactoring(s) being tested
by that particular test case. Multiple executions of refactorings of the same kind are represented
by corresponding numbers, e.g., Test Case 18. The second column, Elements, represents the size
of the test case concerning the number of classes, constructors, methods, and fields of the input
program. The third and fourth columns represent the correctness of the refactorings specified
by Eclipse and our approach, respectively, by showing if the test cases have been successfully
executed. Note that Test Case 19 contains our example scenario introduced in Section 10.2.1.
Thus, results regarding correctness underpin the relevance of our approach. Eclipse does not
check for external method accesses and, as a consequence, fails at Test Case 19. In our approach,
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we have made this check convenient by adding access edges to the program model and succeed
in this test case as well. The fifth column contains our execution times for each test case, given
in milliseconds. Unfortunately, we were not able to provide time measurements for Eclipse as
we could not separate the actual methods performing the refactoring from other Eclipse tasks
and the overhead caused by the graphical interface. Based on manual time measurements, we
assume that the Eclipse execution times are comparable to ours, thus indicating the practical
relevance of our technique.

The test cases 15 and 16 in ARTE also determine if synchronization de facto happens in-
crementally, i.e., the unaffected program parts remain untouched and are not regenerated – this
is ensured by including program parts in the test input that are behaviorally equivalent to the
original ones, but having different code being generated by the transformation.

Concluding the evaluation results, we found that our implementation prototype fulfills the
requirements of all our test cases, i.e., our refactoring specifications are proven to be correct
for typical cases of the respective refactoring operation. Moreover, multiple refactorings can be
applied sequentially to the program model before synchronizing it with the source code. The
synchronization has proven to be incremental according to the notion above.

10.2.6 Threats to Validity

In this section, we discuss threats to the internal and external validity of the evaluation of our
refactoring approach.

Internal Validity

We evaluated our refactoring approach based on synthetic examples that have been specified by
ourselves. Here, lies a risk that we did not consider all relevant cases. To mitigate this threat,
we discussed among the authors of [129] the considered cases until we have not been able to find
any uncovered case.

External Validity

The evaluation based on synthetic examples might limit the generalization of the results. The
systematic specification of examples indicates the possibility of generalization.

Also, due to the short run-time of the refactorings, effects like the Java garbage collection
might have a high impact on the measured run times. To mitigate this threat, we reported the
median run time of multiple executions.

10.2.7 Conclusion on Formalizing Refactorings

In this section, we have shown how OO refactorings can be formalized using graph transformation
rules and how the changes made by these rules on the program model can be propagated into
the implementation. While graph transformation rules have only been suitable to check the
applicability of an OO refactoring before, using our approach also their application is possible.
Furthermore, our evaluation has shown the effectiveness of our refactoring implementation to
detect behavior-changing refactorings upfront. However, while we consider visibilities at checking
and executing refactorings, we currently only consider these from the perspective of correctness.

10.3 Security-aware Refactorings

The validity of proposed refactorings is mostly concerned with purely functional behavior preser-
vation [23], whereas their impact on extra-functional properties like program security has received
little attention so far [269]. However, applying elaborated information-flow metrics for identifying
security-preserving refactorings is computationally too expensive in practice [270].

In what follows, we first summarize an experiment on the interplay between refactorings and
visibilities in Section 10.3.1. Afterward, based on the insights from this experiment, we introduce
possible security-preserving extensions to the Move Method refactoring in Section 10.3.2. Thereby
we use the formalization as introduced in Section 10.2.2 and extend it with additional security-
preserving constraints. Finally, we conclude in Section 10.3.3.
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10.3.1 Controlling the Attack Surface of Object-Oriented Refactorings

For studying the interplay between refactorings and security, as an alternative to elaborated
information-flow metrics, we consider attack-surface metrics as a sufficiently reliable, yet easy-
to-compute indicator for the preservation of program security [212, 211]. Attack surfaces of
programs comprise all conventional ways of entering a software system by users/attackers, e.g.,
invoking API methods or inheriting from super-classes, such that an unnecessarily large surface
increases the danger of exploiting vulnerabilities. Hence, the goal of a secure program design
should be to grant the least privileges to class members to reduce the extent to which data
and operations are exposed to the world [212]. In Java-like languages, accessibility constraints
by means of modifiers public, private and protected provide a built-in low-level mechanism
for controlling and restricting information flow within and across classes, sub-classes and pack-
ages [68]. Accessibility constraints introduce compile-time security barriers protecting trusted
system code from untrusted mobile code [271]. As a downside, restricted accessibility privileges
naturally obstruct possibilities for refactorings, as CRA updates (e.g., moving members [263])
may be either rejected by those constraints, or they require to relax accessibility privileges, thus
increasing the attack surface [272].

Considering the attack surface of an object-oriented program, the refactoring of moving
checkFormat, discussed in Section 10.2.2, should be definitely blamed as harmful. The enforced
relaxations of accessibility constraints for ending in a compiling state unnecessarily widen the
attack surface of the original program. This especially applies to those refactorings widening the
visibility of security-critical methods. In contrast, the imaginary refactoring allowing to reduce
the visibility of the moved method should be appreciated as it even narrows the attack surface.

Ruland et al. presented a search-based technique to find optimal sequences of refactorings for
object-oriented Java-like programs regarding sets of optimization objectives [144]. Their model-
based tool implementation, called GOBLIN, represents individuals, i.e., intermediate refactoring
results, as program-model instances complying with the program model introduced in Chapter 5.
Hence, instead of regenerating source code after every single refactoring step, they apply and
evaluate sequences of refactoring operations, specified as model-transformation rules in Hen-
shin [215], to the program model. To this end, they apply MOMoT [273], a generic framework
for search-based model transformations.

To deal with the discussed interaction between class member’s visibilities and design quality,
together with Ruland et al., we investigated this relation, by explicitly taking accessibility con-
straints into account in GOBLIN [144]. We apply Move Method refactorings as introduced in
combination with operations for on-demand strengthening and relaxing of accessibility declara-
tions [68] and control their impact on attack-surface metrics. As objectives, we consider

1. elimination of design ŕaws, particularly,

(a) optimization of object-oriented coupling/cohesion metrics [274, 275] and

(b) avoidance of anti-patterns, namely The Blob [20],

2. preservation of original program design, i.e., minimizing the number of changes, and

3. attack-surface minimization in terms of class member visibilities.

Our experimental results gained from applying refactorings to real-world Java programs pro-
vide us with detailed insights into the impact of attack-surface metrics on fitness values of refac-
torings and the resulting trade-off with competing design-quality objectives. To ensure the func-
tional validity of the applied refactorings, we specified them as graph transformation rules and
included some preconditions and postconditions as shown in Section 10.2.2 [129, 143, 128]. Our
experimental results demonstrate that attack-surface impacts of refactorings deserve more atten-
tion in the context of refactoring recommendations, revealing a practically relevant trade-off (or,
even contradiction) between traditional design-improvement efforts and extra-functional (partic-
ularly, security) aspects. Also, Ruland et al. uncover in the experiment that existing tools are
mostly unaware of attack-surface impacts of recommended refactorings [144]. As a consequence
of these observations, in the next section, we investigate the specification of security-preserving
refactorings by enriching our refactoring specifications with security-preserving constraints.
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Figure 10.16: Specification of a Move Method refactoring enriched with secu-
rity constraints.

10.3.2 Security Preserving Refactorings

By applying the UMLsec secure dependency check at the design phase, the implementation will
be structured into security-critical parts and non-security-critical parts. This architecture allows
to encapsulate security-critical parts and to lower the attack surface. At refactoring, we have to
ensure that we not only preserve this design but also do not open new attack vectors that might
result in new attacks.

Critical Class Member Visibilities

Considering the attack surface discussed in the previous experiment, one example that makes
attacks easier is to give a classified member wider visibility. This change might allow an attacker
to directly access a classified member, e.g., from injected code, which was not possible before.

In Figure 10.13 of Section 10.2.2, we showed the formalization of the Move Method refactoring
as Henshin rule. However, in this VB rule, we did not consider visibilities as a security-critical
element but added a postprocessing step that sets the visibility of the moved member to the
narrowest visibility possible for the program to compile. In Figure 10.16, we show a variation
of this rule that includes constraints on the visibilities of members that are critical according to
the UMLsec security requirements.

For critical members, we prevent refactorings that would increase their visibility. Accordingly,
we extended the rule’s feature model with a feature critical indicating critical versions of the
rule. In these critical versions, the method to be moved is annotated with a security requirement,
captured by instances of the node type TAbstractCriticalElement. Iff critical is selected,
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visibilities have to be selected in the feature model, containing features associated with
constraints on visibilities.

The visibility of a method is given in the attribute tVisibility of the :TModifier node.
Java programs can contain four different visibilities we have to consider:

public: The first case is public methods for that no additional restrictions apply.

package: Methods with the visibility package can only be moved to classes in the same package
as the source class. This condition is expressed by the :TPackage node that is part of the
rule if the feature package is selected.

protected: For the visibility protected, two possibilities allow the move, expressed by the fea-
tures protectedA and protectedB.

protectedA: As for the visibility package, the target class is in the same package as the
source class. For this reason, the TPackage node is also part of the rule if the feature
protectedA is selected.

protectedB: The target class is a child of the source class. This is represented by an
instance of a parentClass reference with the presence condition protectedB.

private: Private methods cannot be moved to another class. Since the method’s visibility is
part of all rule products, no explicit handling of private methods is required.

Every rule product containing critical either moves a method with public, package, or
protected visibility. For the protected visibility, there are two non-exclusive options. As we did
it for possible targets of the move, we explicitly include case protectedA ∧ protectedB as we
expect these refactorings to be more beneficial due to the close distance between the source and
target class. For methods that are not critical, no restrictions for moving these apply.

Critical Class Member Target Class

While class visibilities can be an indicator of a software system’s security standard, these are
no strong security mechanisms. Usually, a software system’s security design combines security
levels with authentication mechanisms at the borders of the security levels. Here, UMLsec’s
secure dependency allows specifying which class members belong to which security level.

A weakening of the security design can happen if a classified member is relocated into a
class that did not contain classified members before. In this case, we increase the size of the
security-critical code and may open new attack vectors through the original members of the
class the member has been relocated to. After the refactoring, code that had been developed
applying strong security standards is combined with code that has been treated less critically.
Also, security mechanisms might not apply to the non-critical code. For example, the Java
security manager can be configured to treat specific locations in the software system differently.
Considering the run-time verification of secure dependency presented in Chapter 9, by definition,
accesses to critical members within the class defining the critical members are treated as secure.
Accordingly, additional members get access to classified information that has not been considered
to have this access. This additional access might cause security violations.

To prevent such Move Method refactorings, in Figure 10.17, we present additional application
conditions preventing moves of critical members into non-critical classes. In the figure, for
simplicity, we only show the conditions for the secrecy case. However, the conditions for the
other cases, e.g., the integrity case, are defined analogously.

The idea of these application conditions is that the member to be moved either has no security
annotations («forbid#secrecy») or if the member has a security annotation («require#secre-
cy») additional conditions have to be fulfilled. These additional application conditions capture
that the target class of the move (targetClass) is already on the considered security level, in this
case, the security level secrecy. A class is on the security level of secrecy if it defines a member
on this security level or accesses a member on the security level. On the program model, this
can be expressed in two ways.

First, similarly to UMLsec in the UML models, using the critical annotation. Application
condition «require#secrecy1» captures this case. A move to the target class for a method clas-
sified with secrecy is allowed, if targetClass is annotated with TCritical and this annotation
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Figure 10.17: Security extension to the Move Method refactoring regarding
allowed targets for critical methods.

has a secrecy reference to a method or field (TMember). Where this member is defined is not
relevant in this case as the targetClass is on the security level of secrecy regardless of defining
a member on this level itself or having a member that accesses a member on this security level.

The second case is that the TSecrecy annotation is used to put a member of targetClass

on the security level of secrecy. This case is shown in application condition «require#secrecy2».
For the move to be allowed, it is sufficient that one of the two application conditions «require#se-
crecy1» and «require#secrecy2» is fulfilled.

10.3.3 Conclusion on the Security Preserving Refactorings

In this section, we have shown that there is a significant interplay between refactorings and se-
curity specifications such as visibilities. However, it is possible to optimize a software system’s
design and these security requirements at the same time. From a security perspective, the con-
sidered metrics like the attack surface measured in terms of visibilities are only a minor indicator
of a software system’s security. We showcased how the formal refactoring specifications can be
extended to preserve security constraints, e.g., specified using UMLsec’s security requirements.

10.4 Conclusion on the Refactoring of Security-Critical Soft-
ware Systems

While the refactoring of a software system is already challenging, this challenge even gets greater
on security-critical software systems. In this chapter, we have shown how refactorings can be
formalized using graph transformation languages. Existing works show that such formalizations
allow reasoning about the correctness of the refactorings regarding them not changing a soft-
ware system’s behavior [23]. Also, such formalization allows checking the applicability of the
refactorings upfront [23, 36]. However, the correctness of the refactored implementation could
not be guaranteed as the refactorings had to be performed manually on the implementation.
Here, we showed how this gap can be overcome using the program model and synchronization
mechanism introduced in this thesis. Finally, we have shown how the formalized refactorings can
be extended with security constraints, leveraging design-time security requirements.

In summary, the presented solution allows the restructuring of security-critical software sys-
tems as part of the GRaViTY development approach. During this task, the discusses security
extensions allow to automatically prevent security-violating refactorings.
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Chapter 11

Specification of Variability

throughout Variant-rich Software

Systems

This chapter shares material with the GPCE’2018 publication łModel-Based Security Analysis of
Feature-Oriented Software Product Linesž [276].

Software product line engineering [277] enables the systematic reuse of software artifacts
through the explicit management of variants in terms of variability. A Software Product Line
(SPL) is a family of software product variants sharing a set of core assets and differing in a set of
features, that is, increments of functionality only present in some of the product variants. Rep-
resenting an SPL in terms of features, and mapping these features to development artifacts such
as design-time models and source code allows generating individually-tailored product variants
on-demand by retrieving the corresponding artifacts for a given feature selection. Since SPLs are
useful for tailoring products to diverse customer needs, companies such as Boeing, Bosch, Hewlett
Packard, Toshiba, and General Motors use SPLs to develop business-critical software [278].

  

UML

Domain Model

Design Model

Implementation Model

Source
Code

Program Model

Refactorings

Security Checks
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Security 

Change
Change

Security Checks Variability 
Security 

Figure 11.1: Variant-rich software systems in the concept of the GRaViTY
approach.

Individually tailored variants of software systems have made our everyday lives considerably
easier, and yet they give rise to a rapidly growing multitude of security threats. To allow dealing
with these threats but also to allow traceability of security requirements on different system
representations, we need an appropriate notation for security assumptions as well as for variability
points. These requirements have to allow automated security analysis, e.g., by detecting instances
of security violation patterns and traceability in case of changes. Figure 11.1 shows the integration
of variability into the GRaViTY approach. Comparable to security requirements, the variability



208 Chapter 11. Specification of Variability throughout Variant-rich Software Systems

specifications correspond to each other. The required notations for security assumptions and
variability points are represented by the Variability and Security extensions on the UML models,
the source code, and the program model.

While the specification of security requirements on UML models and the source code has
been introduced by us in Chapters 3.6.1 and 6.4, the interaction of these with variability has
not been considered until now. Given these circumstances, the question is how we can apply the
developed techniques for security compliance checks and maintenance to software product lines
as considered in the fifth research question of this thesis:

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

For answering this research question, first, we have to find a suitable notation for variability.
This notation has to allow efficient ways to detect security violations on software product lines
and to support developers in restructuring them. In this regard, we aim at representing variability
similarly across all artifacts considered by GRaViTY. Furthermore, we must be able to keep the
variability specifications consistent. Accordingly, in this chapter, we answer RQ5.1 regarding the
specification of structural variability on Java source code, UML models, and the program model:

RQ5.1: How can we specify variability throughout a software system, including design-time
models and security requirements?

In this chapter, we assume that implementation-level variability is specified using Antenna [24]
preprocessor statements. For supporting the consistent specification of variability across the
artifacts considered in GRaViTY, as shown in Figure 11.1, we make the following contributions:

1. Two variability extensions oriented on Antenna for specifying variability throughout all
artifacts considered in GRaViTY:

(a) The SecPL profile to specify variability in UML models.

(b) An extension to GRaViTY’s type graph to allow explicit reasoning about variability
in program models.

2. An approach for parsing Antenna variability annotations in the implementation and map-
ping these to the two proposed variability extensions for preserving the consistency of the
variability specifications.

For demonstrating the variability-related approaches of this thesis, we converted the iTrust
system into a software product line. As shown in Chapter 2, the iTrust system has been developed
based on use case descriptions. In the iTrust product line, it is possible to configure the software
system to only contain selected kinds of users and selected use cases. For example, a version of
the iTrust system can be deployed that does not allow patients to access the software system
and therefore also does not contain the use cases describing activities performed by patients.

In this chapter, we discuss how to support developers in the model-driven development and
maintenance of secure software product lines supporting design-time UML models, source code,
and our program model. First, we introduce background on variability engineering in Section 11.1
and our addition of variability to the iTrust example in detail. In Section 11.2, we discuss how we
can specify variability on UML models and the program model considering the existing Antenna
notation for variability on Java source code [24]. We present our prototypical tool support
for variability across all artifacts in Section 11.3 and evaluate the suitability of the introduced
variability notations in Section 11.4. Finally, we discuss threats to validity in Section 11.5 and
conclude on our variability extensions and their integration into GRaViTY in Section 11.6.

11.1 Background on Variability Engineering

Variability engineering is concerned with variability in arbitrary kinds of systems. In this chapter,
we focus on software systems and variability within their software. A software product line
constitutes a configurable software system built upon a common core platform [279]. Product
implementation variants are derivable from those generic implementations in an automated way
by selecting a set of domain features, i.e., user-visible product characteristics, to be assembled
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Figure 11.2: Feature model excerpt of a software product line version of the
iTrust system.

into a customized product variant. Software product line engineering defines a comprehensive
process for building and maintaining a product line. During domain engineering, a product line
is designed by

(1) identifying the set of relevant domain features within the problem space and

(2) by developing corresponding engineering artifacts within the solution space associated with
a feature (combination) for assembling implementation variants for feature selections.

In what follows, first, we discuss the concept of features in an SPL in detail. Afterward,
we discuss how variability is implemented, and finally, we discuss how to deploy an executable
product from an SPL.

11.1.1 Feature Identification and Specification

Technically, a feature is a unit of functionality that can be configured, that is, switching features
on or off [278]. During domain engineering, logical dependencies between features further refine
the valid configuration space by restricting combinations of features. For instance, domain feature
models provide an intuitive, visual modeling language for specifying the configuration space of a
product line [280]. Feature models comprise a tree-based representation of feature dependencies.
In a feature model, a feature can only be selected if its parent feature has been selected. Besides,
there are constraints on the child features of a parent feature, such as mandatory features or
group constraints for all child features.

There are various tools and notations for specifying feature models [280, 281, 282, 283]. In
this thesis, we use FeatureIDE [284, 283] and its notation. Figure 11.2 shows an excerpt of a
particular feature model created from the use cases of the iTrust system and their dependencies,
complying with Figure 2.1 and the corresponding description of Chapter 2.

In our iTrust product line, we consider every use case and its realization in the software
system to be a feature of the software system. In addition, the users supported by the system are
considered as features of the software system. In the feature model, these are concrete features,
meaning that they are directly used in the implementation or specification of the software system.
Besides these concrete features, there are abstract features that allow structuring in the feature
model. For example, the abstract feature Users is used to group the roles that can be supported
by the product line. Among others, these are Patients and, grouped under another abstract
feature, LHCPs, and HCPs.

In the context of iTrust system, the feature HCP has always to be selected while Patients

and LHCP are optional. If a feature is mandatory or optional, this is denoted by a filled or
empty circle. As a mandatory use case, we specified UC11 (Document office visit). The feature
corresponding with this use case has two child features (UC10 and UC37) that are grouped in an
or -group which means that at least one of the two features has to be selected. Besides or -groups



210 Chapter 11. Specification of Variability throughout Variant-rich Software Systems

there are alternative-groups in FeatureIDE, stating that exactly one feature has to be selected.
As we reverse engineered our iTrust product line from a single product, there are no use cases
that exclude each other in this case.

Last, there are crosstree constraints stated below the feature model that are constraints over
the features that have to hold in addition to the constraints in the tree representation. Crosstree
constraints are logical constraints over the features of the feature model. In FeatureIDE, besides
primitive logical operators like and, or, and not, complex logical operators like implication and
bi-implication are supported. For example, if the feature UC30 has been selected, this implies
that LHCP and Patients have to be selected, too.

The shown feature model comprises 16 concrete features, of which at least four features have
to be selected. The features HCP, UC3, and UC11 have to be selected in all cases. In addition,
UC10 or UC37 has to be selected. All in all, there are 528 possible configurations of our reverse-
engineered iTrust feature model.

11.1.2 Implementation of Variability

After the identification and specification of features, the next step is implementing the SPL. To
establish traceability, features can be mapped directly to source code and to design-time models:

• Preprocessor directives can be used to annotate feature-specific code portions, and the
entire code-base can be divided into modules [278].

• Design models can be annotated with presence conditions over a set of features [285].

In GRaViTY, we use preprocessor directives specified using Antenna [24] for specifying vari-
ability on Java source code. Antenna provides C-like preprocessor directives for Java. As the
directives are not part of the Java language, in Antenna these are specified in comments. Orig-
inally, Antenna has been developed for JavaME apps but can also be used with standard Java
applications. FeatureIDE provides support for Antenna preprocessor directives and allows using
features from FeatureIDE feature models in the directives.

Listing 11.1 shows an excerpt of the iTrust implementation of use case UC10 of doctors
entering or editing personal health records of patients. The whole class should only be part
of the deployed iTrust system if the feature assigned to this use case (UC10) has been selected.
This variability is realized by an Antenna preprocessor directive in line 1. This directive states
that everything behind this directive is only part of the software system if the condition of the
directive evaluates to true. Such #if directives have always to be followed by a #endif directive
that states where the conditional part ends. In line 33, this specific directive corresponding to the
#if from line 1 is shown. Nesting of preprocessor directives is possible, for example, the editing
of health records can interact with the management of allergies if feature UC67 is selected. In
this case, the class contains a field allergyDAO and an method updateAllergies for managing
allergies (lines 4–6 and 9–31). The implementation of the updateAllergies method checks
among others if the allergy has already been added to the patient and if there are interactions
with prescriptions of the patient but only if the management of allergies as considered in use
case UC37 is part of the software system.

11.1.3 Product Deployment

After implementing a software product line, we have to deploy executable products of our soft-
ware product line. Here, features not only correspond to configuration parameters within the
problem space of a product line but also refer (to assemblies of) engineering artifacts within
the solution space at any level of abstraction. For instance, concerning the behavioral specifi-
cation of variable software systems at the component level, modeling approaches such as state
machines are equipped with feature parameters denoting well-defined variation points within a
generic product line specification including any possible model variant [286]. This way, explicit
specifications of common and variable parts among product variants within the solution space
allow for systematic reuse of engineering artifacts among the members of a product family.
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1 //#if UC10

2 public class EditPHRAction extends PatientBaseAction {

3 private final PatientDAO patientDAO;

4 //#if UC67

5 private final AllergyDAO allergyDAO;

6 //#endif

7 private final HealthRecordsDAO hrDAO;

8 ...

9 //#if UC67

10 public String updateAllergies(long pid , String description) {

11 ...

12 String patientName = this.patientDAO.getName(pid);

13 List <AllergyBean > allergies = allergyDAO.getAllergies(pid);

14 for(AllergyBean cur : allergies){

15 if(cur.getDescription ().equals(bean.getDescription ())) {

16 return "Allergy "+bean.getNDCode ()+" has already been added for "+

patientName+".";

17 }

18 }

19 ...

20 //#if UC37

21 //@List <PrescriptionBean > beansRx = this.patientDAO.

getCurrentPrescriptions(pid);

22 //@for(PrescriptionBean element : beansRx) {

23 //@ if(element.getMedication ().getNDCode ().equals(bean.getNDCode ())) {

24 //@ return "Medication "+ element.getMedication ().getNDCode ()+" is

currently prescribed to "+ patientName +".";

25 //@ }

26 //@}

27 //#endif

28 ...

29 return "Allergy Added";

30 }

31 //#endif

32 }

33 //#endif

Listing 11.1: Excerpt of the Java class EditPHRAction of the iTrust SPL
using Antenna preprocessor directives.
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Variability comes in two flavors, depending on the time when features are configured to get
a product configuration:

static: Variability that is resolved at the deployment of the software system, e.g., by compiling
a version of iTrust that only contains the selected use cases.

dynamic: Variability that is present at run-time and dynamically resolved according to the
circumstances of the execution. For example, extensions of iTrust that are not part of the
bought product but can be dynamically enabled or disabled at run-time if a more expensive
version of the product is bought or expired.

While static variability does not allow to change the product configuration after deployment,
for dynamic variability, it is possible to reduce the configuration space available after deployment
by statically configuring a subset of the available features.

For the development of an SPL using Antenna and FeatureIDE, FeatureIDE allows developers
to statically select a (partial) feature configuration and comments out all the source code that
is not part of the selected configuration. Accordingly, if a complete feature configuration has
been selected, the remaining code comprises a compilable and deployable product of the SPL.
Reconsidering the SPL shown in Listing 11.1, we selected in FeatureIDE a configuration that
contains UC10 and UC67 but in which UC37 is deselected. For this reason, the implementation
belonging to UC37 has been commented out by FeatureIDE (lines 20–27).

11.2 UML and PM Variability Extension

Comparable to Antenna for the specification of variability in Java source code, we need mecha-
nisms for specifying variability on UML models and the program model. For this purpose, we
introduce a variability extension to the type graph and for variability within UML models the
SecPL profile, allowing users to specify variability in the program model and respectively UML
models. To annotate structural and behavioral elements that only exist in some products, model
elements can have presence conditions, that is propositional expressions over a set of features.
The set of features is defined using a feature model, a standard SPL representation. We aim at
using the same feature model as for the source code throughout all artifacts considered within
GRaViTY, including source code, UML models, and program models.

Within this thesis, we assume that SPLs were originally developed at the implementation
level using Antenna, a widely-spread preprocessor mechanism for annotating Java source code
with variability [24]. However, other preprocessor mechanisms with similar annotations could
be potentially supported without much additional effort. On top of that, developers might use
custom annotations such as @Secrecy to specify security requirements on fields and methods
that will be extracted and added to the output model as discussed in Chapter 6.

In what follows, first, we introduce our variability extensions to the program model and
UML models. Afterward, discuss how these extensions can be integrated into the GRaViTY
synchronization mechanism to support Java SPLs specified using Antenna.

11.2.1 Variability Notations in GRaViTY

To specify variability on all artifacts considered within the GRaViTY approach, we need mech-
anisms comparable to Antenna to reflect the variability annotations on these artifacts. In this
section, first, we introduce our variability extension to the type graph of our program model,
and afterward, a profile for specifying variability within UML models.

Program Model Variability Annotations

The program model is an abstract view on the implementation abstracting all information from
the statement level. Accordingly, we have to reflect the Antenna preprocessor statements in the
same manner. Figure 11.3a shows our variability extension to GRaViTY’s type graph. We define
a new annotation type TPresenceCondition generalizing TAnnotation. This new annotation
type contains a presence condition (pc) under which the annotated program model element is
part of a product. This TAnnotation can be applied to any TAnnotatable element from the
type graph, e.g., TMember or TAbstractType covering methods and fields as well as all kinds of
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Figure 11.3: Metamodels of the GRaViTY variability extensions.

types. This allows for covering variability on the class-method-field level. However, Antenna
allows also variability on the statement-level of methods and fields. As the program model does
not contain this information in detail, we have to cover this variability differently. The visible
effects of statements in the program model are accesses between members (TAccess and its child
types). Depending on the variability at the statement level some accesses might be present in a
product or not. As these are also TAnnotatable, we can reflect this information by annotating
accesses with a corresponding instance of TPresenceCondition.

Figure 11.4 shows an excerpt of the iTrust program model including the proposed variability
extension. The shown excerpt focuses on the statements in lines 12 and 21 of the iTrust source
code shown in Listing 11.1. These statements belong to the method updateAllergies of the
class EditPHRAction. This class itself is wrapped by the preprocessor statements //#if UC10

... //#endif. This is reflected by the TClass representing EditPHRAction being annotated
with a TPresenceConditon, as shown in the top left side of Figure 11.4. The TMethodDefinition
representing updateAllergies is again wrapped by additional Antenna preprocessor statements.
In the end, this method is part of the software system if UC11 ∧ UC67 are part of the feature
configuration. As the existence of the TMethodDefinition depends on the existence of the defin-
ing TClass, this method is only annotated with a TPresenceCondition whose pc is set to UC67.
In the statements in lines 12 and 21, both times the field patientDAO is accessed. This field
is only part of the software system if the feature UC10 is selected. Again, the corresponding
presence condition already applies to the defining TClass. Accordingly, the node of the type
TFieldDefinition is not annotated with an additional presence condition. All additional An-
tenna preprocessor statements relevant for the considered excerpt are at the statement level of
the method updateAllergies. For the statements in line 12, no additional presence conditions
apply. Accordingly, the two resulting accesses, a TRead of the field patientDAO and a TCall of
the method getName, are not annotated with any additional presence conditions. In contrast to
this, the statements in line 21 are only part of the method if the following presence condition
holds: UC10 ∧ UC67 ∧ UC37. Again, we do not have to repeat conditions that are derived from
owning elements. Accordingly, the two accesses are only annotated with TPresenceConditions
whose pc is set to UC37. The called method getCurrentPrescriptions is conditional itself.

SecPL Variability Stereotype

Our variability extension for UML models works similarly to the one presented for the program
model. Figure 11.3b shows the UML profile specification of this variability extension. We spec-
ified a «Conditional» stereotype that is applicable to every UML Element and has a presence
condition (presenceCondition) as a tagged value. The tagged value presenceCondition spec-
ifies the condition under which the annotated Element is present in products of the UML model
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Figure 11.4: Program model excerpt showing the application GRaViTY’s
variability extension.
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ing the usage of the SecPL profile.

product line. In presence conditions, we support propositional formulas with negations, conjunc-
tions, and disjunctions over the set of features. In addition, to ease the development of UML
product lines, we specified a constraint ConstraintConditional that evaluates the syntactical
correctness of presenceCondition within a UML editor. While the process of managing pres-
ence conditions can be complicated, adequate tool support is a promising strategy to support
users during such tasks [287].

For the demonstration of the application of «Conditional», we applied the stereotype to
two excerpts of iTrust SPL’s design-time models. In Figure 11.5, an excerpt of the design model
is shown, that is focusing on UC9 of the iTrust system of providing a patient with access to her
health records. As an example for health records, we show the recorded office visits of a patient.
For accessing health records, a ViewRecordsPatientsControl has been specified, that checks
which health records are visible to a Patient user and provides them. As the LoginControl used
to introduce Secure Dependency in Figure 3.6 of Section 3.6.1, the ViewRecordsPatientsCon-

trol has access to the attributes of the class User, and therefore, has to be on the security level
of secrecy for the signature of the attribute password:String. In Figure 11.6, we show the same
excerpt of the implementation model as in Figure 3.4 from the introduction of model-driven
development in Section 3.3.

Variability on UML models can be specified using the SecPL «Conditional» stereotype. For
instance, the class Prescription in Figure 11.5 is present if the feature UC37 is selected and the
class ViewRecordsPatientControl is present if the features UC9 and Patients are selected.

If a conditional element owns other elements, these owned elements are only part of the model
if the owning element is part of the model. For example, the attribute medication:Medication

is only part of the software system if Prescription is part of the software system. While it
is possible to annotate associations with «Conditional» often their precedence condition can
be derived from the presence conditions of the elements at the ends of the association. For
example, office visits have an association with the prescriptions made during the visit. As the
association end prescriptions has only a value if the feature UC37 is selected and the class
Prescription is present, this association is also only present if the feature UC37 is selected. The
«call» dependency between ViewRecordsPatientControl and Prescriptions is only present
if it’s own presence condition is fulfilled and the presence conditions at all ends. In this case, the
features UC9, UC19Patients, and UC37 have to be selected.

Using GRaViTY’s two presented variability extensions, variability can be specified on UML
models and the program model in a consistent way. Also, the underlying mechanism is directly
oriented on Antenna, allowing to synchronize the variability annotations among all three artifacts.
We discuss this synchronization in the next section.
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Figure 11.7: Concept of GRaViTY’s reverse engineering mechanism for SPLs.

11.2.2 Parsing of Antenna Annotations and Mapping to Models

To integrate variability on all artifacts supported within the GRaViTY approach, we have to
be able to parse the Antenna annotations in the source code and to synchronize these with the
variability annotations in the program model and UML models. However, despite our primary
intention to support security by design, in practice, security concerns often need to be addressed
in codebases long after they were initially deployed. Apart from poor planning, a root cause are
migration scenarios where the original application was developed for an offline context [288]. In
this section, besides the integration into the synchronization mechanism of GRaViTY, we study
the application of our methodology to situations where the goal is to harden an existing software
system. To this end, we provide a mechanism for the reverse engineering of SecPL models
from existing codebases. Our mechanism extends the state-of-the-art methodology for model-
based reverse engineering, which is concerned with the process of obtaining useful higher-level
representations of legacy systems [3].

The key idea is to let the developers annotate security-critical parts of the source code of
the input SPL. We can then generate a UML class model product line that is amenable to the
analysis capabilities to be introduced in Chapter 12. However, an application as part of the
synchronization mechanism discussed in Chapter 6 is also possible. In principle, the proposed
TGGs could be extended with additional rules comparable to those for synchronizing security
requirements. However, as Antenna preprocessor statements are defined in comments, detailed
information about the lines in which these are specified is not present in the MoDisco model used
by GRaViTY as intermediate source code representation. While in most cases the comments are
related to the expected model elements, this is not always the case. For example, an //#endif

directive after the closing brace of a method definition might be associated in the MoDisco
model to the next method definition in the source code. For this reason, supporting variability
annotations as part of the TGGs is currently not feasible.

Figure 11.7 gives an overview of our mechanism’s internal workings. We use the TGG trans-
formation introduced in Section 6.2.2 to extract a UML model or program model from the existing
Java codebase. In addition, we parse the Antenna preprocessor annotations from the source code
to add corresponding «Conditional» stereotypes in the UML model and @TPresenceCondition

annotations in the program model.
In the following, we show a regular expression used during our parsing process, which simul-

taneously acts as a lightweight specification of possible annotations. Ifdef directives respecting
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Figure 11.8: Component diagram showing the integration of the variability
processing into GRaViTY’s synchronization mechanism.

the following expression are represented as presence conditions of elements in the class diagram.

//\𝑠 ∗#𝑖𝑓(𝑑𝑒𝑓)?. ∗ (𝑛|𝑟) (11.1)

This expression matches every line comment starting from the beginning specified by the // to
the end of the line which has the keyword if or ifdef directly after the start characters, ignoring
white space. The rest of the line contains the presence condition.

Listing 11.2 shows a source code excerpt illustrating the use of our variability annotations.
The given regular expression matches lines 1 and 5 of the source code excerpt. Based on the
position of those matches in the source code and the positions of the endif directives we can
calculate which Java elements are covered by such an annotation. This also covers GRaViTY’s
security annotations. The positions of Java elements are again determined by matching regular
expressions.

1 //#ifdef UC37

2 @Critical(secrecy ={"medication:Medication"})

3 public class Prescription {

4 ...

5 //#if U19Patients

6 ... // #endif

7 } //#endif

Listing 11.2: Source code with Antenna and GRaViTY’s security annotations.

11.3 Tool Support for the Synchronization of Variability
Annotations

Figure 11.8 shows a component diagram of our implementation of GRaViTY’s variability ex-
tension. We specified our variability extension to the type graph as EMF metamodel in the
Variability component. Comparably, we specified our UML variability profile in the compo-
nent SecPLProfile extending the standard UML metamodel and the UMLsec profile.

To create instances of program models and UML models using our variability extensions,
we implemented the Antenna parser discussed in Section 11.2.2 in the VariabilityProcessor

component. This component parses the Antenna preprocessor statements and relates these to
the features specified in FeatureIDE feature models. Also, this component is registered as a
postprocessor at the TGG-based synchronizations realized in the components PM TGG and UML

TGG. These two components have been discussed in detail in Section 6.2.3. After a program



218 Chapter 11. Specification of Variability throughout Variant-rich Software Systems

model or UML model has been created or updated using GRaViTY’s synchronization mech-
anism, the VariabilityProcessor component searches the locations of all model elements in
the source code and checks which Antenna preprocessor statements apply to these. If one ore
more Antenna preprocessor statements apply, corresponding instances of TPresenceCondition

or «Conditional» are created.

11.4 Evaluation of the Variability Extension

In the previous section, we introduced a prototypical implementation of GRaViTY’s variability
extension. Based on this implementation, we evaluate the feasibility to represent SPLs using
GRaViTY on the levels of UML models and program models.

Setup. In our evaluation, we applied our reverse engineering mechanism to multiple large open-
source projects. By doing this, we produced SecPL models and program models by applying
our reverse engineering mechanism to the available codebases. While most selected projects
featured Antenna annotations specifying variability on the source code level, this was not the
case for OpenJDK’s1 implementation of the Java Secure Socket Extension (JSSE ) and iTrust.
Comparable to iTrust, we extended JSSE’s codebase with variability, by assigning features to
the different supported protocols. As simple existing product lines, we considered the text editor
called Notepad [289]. As real-world examples, that have already been subject to earlier SPL
research [290], we considered MobilePhoto and Lampiro. MobilePhoto [291] is a mobile multi-
media platform with academic background. Lampiro [292] is an instant messaging client which
has been naively developed as a software product line with Antenna and therefore of special
interest for applicability of our approach to real examples. Our Lampiro model is the largest one
considered, comprising 29K elements in the reverse-engineered UML model, including classes,
dependencies, and operations.

Results. We have been able to successfully generate UML class diagrams and program mod-
els for all examples and to add the expected variability annotations to these. After gener-
ating the models, we randomly checked whether the models are annotated as expected with
TPresenceConditon and «Conditional». Thereby, we tried to focus on the most complicated
Antenna preprocessor statements, e.g., multiple levels of nesting or complicated conditions. Dur-
ing this inspection, we did not find any missing or dislocated presence conditions.

11.5 Threats to Validity

In this section, we discuss threats to the validity of the experiment showing the practical appli-
cability of our proposed variability extensions.

11.5.1 Construct Validity

The main threats to validity concern the construction of our tool prototype. For the support of
Antenna preprocessor statements, we implemented an ad-hoc solution that has major drawbacks
that may threaten validity: The ad-hoc implementation based on regular expressions cannot
guarantee scalability and completeness. For this reason, we did not consider scalability or per-
formance in our evaluation. Regarding completeness, we currently do not support variability at
the statement level of methods. However, we discussed the principle suitability of our variability
extensions to express this variability on the program model and in UML models. Nevertheless,
we have shown the feasibility to express variability in the program model and on UML models
as well as the possibility to create a solution for synchronization.

11.5.2 Internal Validity

The main concern regarding internal validity is the manual inspection of the generated models by
us. This inspection comes with two threats. First, we did not inspect all variability annotations

1OpenJDK: http://openjdk.java.net/

http://openjdk.java.net/
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in the implementation and the generated models and might have overseen divergences. However,
as our focus was on the suitability to express variability and not to evaluate our synchronization
mechanism in detail, the results indicate, in combination with our discussion, the suitability to
express variability on the program model and in the UML models. Second, we might have been
biased by our knowledge about the strength and weaknesses of our implementation. To lower
this threat, the authors of [276] performed the review in a pair-programming manner.

11.5.3 External Validity

We considered only a limited number of SPLs in our experiments which might limit the gener-
alization of our observations to other SPLs. To mitigate this threat, we tried to consider SPLs
from different domains and of different sizes.

11.6 Conclusion on GRaViTY’s Variability Extension

In this chapter, we presented variability extensions for UML models and the program model.
Also, we discussed the synchronization of UML models and program models containing variabil-
ity with their implementation and presented a reverse engineering approach. While the proposed
parsing and mapping mechanism works in an ad-hoc manner it has been shown to be suitable
for practical problems. However, currently, only the propagation of variability annotations in
the implementation into the program model and UML models is possible. When models and
code may be subject to evolution, keeping security requirements synchronized on both levels
is challenging. To also support these two opposite directions, in the future, one can extend
the MoDisco parser to allow the explicit parsing of Antenna preprocessor statements and the
synchronization of these using TGGs. By improving this synchronization between the different
artifacts of SPLs, one can provide a full integration as part of the GRaViTY approach. Nonethe-
less, we have successfully shown the possibility to represent variability consistently across the
artifacts of variant-rich software systems.





221

Chapter 12

Security in UML Product Lines

This chapter shares material with the GPCE’2018 publication łModel-Based Security Analysis of
Feature-Oriented Software Product Linesž [276].

As discussed in the previous chapters of this thesis, security is a business-critical factor in
enterprises, since each security issue implies a potential loss of customer trust. Since security
concerns permeate the entire software system, the system design needs to treat them as first-class
citizens. To this end, model-based techniques, such as UMLsec [72], can be used to specify and
analyze the consistency of security requirements in early phases, such as in architecture models at
design time. Considering this, we have shown in the previous chapters of this thesis how security
requirements that were specified at design time can be traced throughout the development process
and how compliance with these security requirements can be verified.

However, security becomes yet more challenging during the development of Software Product
Lines (SPLs, [278]). For the management of security requirements, developing an SPL is chal-
lenging due to the complexity arising from variability : an SPL with 𝑛 features can include up to
2𝑛 individual products. In domains like automotive engineering, where SPLs can have thousands
of features [295], the resulting software engineering problems can be of astronomical scale.

In many cases, practical solutions for handling variability involve trade-offs between precision
and traceability. For instance, during testing of SPLs, developers use sampling techniques [37,
296, 297], in which a selection of all products is considered to uncover implementation defects.
However, in the case of security, sampling is problematic: a vulnerability affecting any of the
products represents a potential leakage of secrets and, therefore, a business risk. Worse, a
remarkable research result indicates that focusing on a selection of an SPL’s products for security
engineering might be harmful : security measures implemented in a subset of all products can be
used by attackers to automatically generate exploits for the remaining products [298, 299]. For
these reasons, we need an efficient way to specify and analyze the security requirements of all
products in an SPL as considered in the fifth research question of this thesis.

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

When developing SPLs, comparable to security by design, variability should be considered
from the very beginning. For this purpose, developers can use the SecPL profile introduced in the
previous chapter (Section 11.2) to specify variability already on design-time models. Here lies a
significant challenge in the interaction of design-time security and variability. Due to variability,
it can be the case that the presence of a security violation depends on some variable part of the
product line and is not contained in every single product. Also, it can be that specific security
requirements are variable parts themselves, e.g., only apply if the software system is deployed for
a specific country. We need means to specify variability interacting with security and to verify
the compliance of this specification. For this reason, this chapter extends Chapter 11’s answer
to RQ5.1 to also support detailed specification of variability within security requirements and
answers RQ5.2 regarding verification of security requirements in UML model product lines:

RQ5.1: How can we specify variability throughout a software system, including design-time
models and security requirements?

RQ5.2: How can security violations be detected on SPLs?
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Figure 12.1: The SecPL approach’s concept to security in UML product lines.

To address the need for specification and analysis of security requirements on the level of
UML models, we propose a comprehensive methodology for managing security in SPLs system-
atically as an extension of the GRaViTY development approach on software product lines [276].
Specifically, as shown in Figure 12.1, we make the following contributions:

1. An extension of the SecPL profile presented in Section 11.2, allowing users to specify vari-
ability in security requirements besides variability on structural model elements. For this
purpose, SecPL refines UMLsec’s stereotypes for the specification of security requirements
and extends these with presence conditions. (RQ5.1)

2. A family-based security analysis approach for the efficient checking of the security require-
ments expressed using our UML profile. The key idea is to express security checks as OCL
constraints [300]. We provide such encodings for the most prominent UMLsec checks; addi-
tional ones may be created by experts. To avoid the combinatorial explosion arising when
each product is generated and analyzed separately, we evaluate these OCL constraints us-
ing a method for constraint checking on feature-annotated models based on SAT solvers
[301]. Here, we either obtain a counterexample, that is, a subset of features giving rise to
an insecure product, or proof that all products are secure. (RQ5.2)

To our knowledge, our work is the first to support a model-based security analysis of all
products in a software product line. While our analysis relies on template interpretation [301],
one of our key contributions is to provide suitable encodings of security constraints that we feed
as input to template interpretation, similar to other analysis techniques that rely on a backend
SAT solver. Moreover, to the best of our knowledge, our evaluation is the first to assess the
benefit of a template-interpretation-based technique on a set of realistic models.

Our methodology uses UML-based system models for capturing the system design and anno-
tating it with security requirements. In industry, system models are used for various purposes,
including informal communication, documentation, learning, and code generation; UML is the
most widely applied modeling language in many software domains [183]. We rely on UMLsec,
introduced in Section 3.6.1, and combine it with feature-based variability engineering. However,
our approach is not limited to UML but can be adapted to modeling languages with similar
diagram types as well, for example, SysML [302] for automation systems.

First, in Section 12.1, we introduce our extension to the SecPL profile from Chapter 11.
Afterward, in Section 12.2, we discuss how products can be derived considering the variability
within security requirements. In Section 12.3, we introduce our family-based security analysis
supporting variability within structural UML elements and security requirements. We introduce
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Figure 12.2: SecPL profile excerpt showing variability and security stereotype
specification.

a prototypical implementation of this security analysis in Section 12.4 and evaluate the approach
in Section 12.5. Finally, we discuss threats to validity in Section 12.6 and conclude in Section 12.7.

12.1 Security and Variability Profile

We provide a UML extension to support the specification of security requirements, product-
line variability, and security variability. The SecPL profile extends UML with 17 security and
variability stereotypes and tagged values. The security-specific concepts of SecPL are built atop
of those of UMLsec [72]; annotating elements with variability-specific presence conditions is
inspired by solutions such as model templates [285].

To support variability we extended the stereotypes of UMLsec with presence conditions. Fig-
ure 12.2 shows an excerpt with three of SecPL’s stereotypes and their relationship to UML and
UMLsec. Besides the stereotype «Conditional» that extends the UML meta-class Element, al-
ready introduced in Section 11.2, we show the two security-specific stereotypes «ConditionalCriti-
cal» and «ConditionalSecrecy» that generalize their non-conditional counterparts from UMLsec.
All in all the SecPL profile consists out of 17 stereotypes similar to the presented ones and in-
cludes validation rules for the well-formedness of the presence conditions.

12.1.1 «ConditionalCritical»

The «ConditionalCritical» generalizes UMLsec’s «critical» to specify security require-
ments. In this thesis, we mainly focus on the security requirements of protection from unautho-
rized view access (secrecy) and unauthorized modification (integrity). However, we also cover the
other security requirements provided by the UMLsec profile. To this end, «ConditionalCrit-
ical» inherits «critical»’s tagged values for these requirement kinds. Each of these tagged
values stores a list of operation signatures and property signatures. Variability of security re-
quirements is specified using a list of presence conditions, which are mapped to the corresponding
signatures based on their position in the list.

For example, in Figure 12.3, if prescriptions are part of the software system, access to the
prescriptions of an office visit should only be allowed for legitimate entities. For this reason, the
member end prescriptions of the association between OfficeVisit and Prescription must
be on the security level of secrecy. As this member end is only part of the software system if the
feature UC37 is selected, this security requirement is only meaningful in this case. Accordingly, a
«ConditionalCritical» with the presence condition UC37 is applied to the class OfficeVisit.

Multiple requirements on the same element are supported by leaving certain positions in
the lists of the tagged values empty so that each presence condition is mapped to precisely one
entry. For example, the class ViewRecordsPatientController has a second conditional security
requirement regarding the property medication of the class Prescription. While for the first
security requirement only the feature UC37 has to be selected, this security requirement is only
relevant and present when UC37 ∧ UC19Patients have been selected. This is the case as the
class Prescription and the dependency to it have to be part of the model for this security
requirement to be meaningful.
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Figure 12.3: Excerpt from the iTrust SPL’s design model showing the usage
of the SecPL profile including variability and security stereotypes.

12.1.2 «ConditionalSecrecy», «ConditionalIntegrity», etc.

These stereotypes control the existence of their non-variable counterparts from the standard
UMLsec profile in products of the SPL. A «ConditionalSecrecy» functions as an instance of
«secrecy» with a presence condition specifying under which constraint the «secrecy» is present
in the product models of the SPL.

For example, in Figure 12.3, the OfficeVisit has only a member end prescriptions if the
feature UC37 is selected. If this feature is selected, the signature of the member end is put to
the security level of secrecy. Accordingly, a «secrecy» stereotype is required on the dependency
between ViewRecordsUserAction and OfficeVisit but only if the feature UC37 is selected. This
is represented by an instance of «ConditionalSecrecy» with the presence condition UC37.

As its non-variable counterpart, «ConditionalSecrecy» plays an important role also on
dependencies in deployment diagrams as considered in the UMLsec Secure Links check. For
example, Figure 12.4 shows an excerpt from iTrust’s implementation model including variability.
Patients are communicating with the iTrust system, e.g., performing the actions discussed before.
Until now, we did not consider a patient that has not authenticated herself at the system but
is only accessing the public pages provided by the iTrust system. In this case, less restrictive
security requirements apply. If a patient is logged in or not can be represented with a dynamic
feature loggedIn. If the patient is logged in, all information communicated with the iTrust
system has to be treated as confidential while this is not the case for the information transferred
on the public pages on which no sensitive information can be entered. This is represented by
an instance of «ConditionalSecrecy» on the dependency between the artifacts Patient and
iTrust at the bottom of the figure.

12.1.3 «ConditionalEncrypted», «ConditionalLAN», etc.

Similar to the «ConditionalSecrecy», these stereotypes control the existence of their non-
variable counterparts and can be applied to communication paths in UML models. The deploy-
ment diagram in Figure 12.4, shows a usage of the «ConditionalEncrypted» stereotype on a
communication path in the iTrust UML product line. Over the communication between the
iTrust web application and patients only publicly available information is communicated as long



12.2. Deriving Products 225

Hospital

«artifact»

«artifact»
Doctor

«artifact»

«artifact»

«Internet»

«call, secrecy, integrity»

«call, secrecy, integrity»

«call, secrecy, integrity»

«LAN»

AuthentificationService

«call, integrity»

MobileDevice

Database

iTrustServer
WebServer

iTrust

«call, secrecy, integrity»

«deploy»

«deploy»

«deploy» «deploy»

«deploy»

«artifact»

Patient

<<Conditional>>
{presenceCondition={"Patients"}}

<<Conditional>>

{presenceCondition={"Patients"}}

«ConditionalSecrecy» {presenceCondition={"loggedIn"}}

«ConditionalEncrypted»
{presenceCondition={"loggedIn"}}

Figure 12.4: Excerpt from the implementation model of the iTrust SPL show-
ing the usage of the SecPL profile.

as no user authenticated herself at the iTrust system. Accordingly, we assume, that information
has only to be threatened on the security level of secrecy if the user authenticated herself at
the system. For guaranteeing secrecy for patients that should be able to access the software
system from the Internet, in UMLsec an encrypted communication path is a suitable measure.
For cost reasons, we only want to use encrypted communication if we have to. Accordingly, we
make the use of the encryption, specified by «encrypted» in the non-variable UMLsec profile,
dependent on the fact whether the patient authenticated herself. For identifying if the authen-
tication took place, we use the dynamic feature loggedIn as presence condition but this time
on an instance of «ConditionalEncrypted» at the communication path between the WebServer
and the MobileDevice of the patient. The communication path between the WebServer and
iTrustServer represents a LAN connection specified by the non-variable «LAN» stereotype of
UMLsec. This communication path type is suitable for both, with no explicit security require-
ment on the data communicated along with it and the security requirement of secrecy. As the
type of this connection is not dependent on the state of the Patient’s authentication, here we
do not use the variable counterpart «ConditionalLAN».

12.2 Deriving Products

When it comes to deployment of the software system products have to be derived for the SPL
to get an executable product. Products of the SPL are derived by configuring the features,
that is, selecting a specific subset of features. On the implementation, using Antenna with Fea-
tureIDE, this is realized by commenting out all source code parts whose presence condition does
not evaluate to true. Similarly, there is the need to derive products from the model product lines
including security requirements, e.g., to investigate a security violation that has been detected
in a specific product. As for the implementation, products of the model product line are derived
by configuring the features. As a result, model elements and security requirements whose pres-
ence conditions evaluate to false are removed from the model, yielding a regular UML model
annotated with UMLsec security requirements.

As an example, we configure a product that only contains the use cases shown in the use case
diagram in Figure 12.5. Doctors can only document office visits, make prescriptions and view
the prescriptions of patients for whose they are a LHCP. Patients can view their general records
but not the fully detailed prescription reports. The corresponding feature configuration is {HCP,
LHCP, Patients, UC3, UC9, UC11, UC19, UC37}.
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Figure 12.5: Use case diagram showing the use cases supported in a product
of the iTrust product line.
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Figure 12.6 shows the result of deriving a product for this configuration of our example SPL
from Figure 12.3. Inactive elements such as the call-dependency from ViewRecordsPatientCon-

trol to Prescription have been removed. Also, all conditional security stereotypes have been
removed or replaced by the corresponding standard UMLsec stereotypes. For example, the
«ConditionalCritical» on the class OfficeVisit has been replaced with an non-variable
«critical» as the feature UC37 is part of the configuration. The «ConditionalCritical»

on the class ViewRecordsPatientAction has been partly merged with the already existing
«critical» stereotype on this class. The «ConditionalCritical» specifies security levels
for two signatures but with different presence conditions. The first presence condition UC37

evaluates to true as the feature UC37 is part of the configuration. Accordingly, the signa-
ture prescriptions:Prescription[*] is added to the «critical» stereotype. In contrast to
this, the second presence condition UC37 and UC19Patients evaluates to false as the feature
UC19Patients is not part of the configuration. For this reason, the specification of the security
level for the signature medication:Medication is not part of the derived product.

12.3 Family-based Security Analysis

A prime benefit of model-based security approaches is the possibility to perform a security
analysis on design-time models, allowing the implementation of security by design practices. For
example, using the Secure Dependency check, we can determine if objects in the software system
respect the security requirements of the data they send and receive. In the product line setting
addressed by SecPL, performing such analysis on each product of an SPL separately is infeasible
since the number of products can grow exponentially with the number of features. To deal with
this challenge, we propose a family-based security analysis, which lifts checks such as Secure
Dependency from the level of individual products to the entire SPL.

Our analysis assumes an encoding of the to-be-performed check as an OCL constraint. We
provide such encodings for two widely used UMLsec checks; additional ones may be provided by
an expert user. To evaluate such a constraint against the design-time model at hand, we use a
method called template interpretation [301]. Template interpretation was originally designed for
checking well-formedness properties, such as “each association has at least two member ends”, in
unstereotyped UML models with variability. To address our security setting, our OCL constraints
also take stereotypes into account. Template interpretation generates a certain propositional
formula that can be evaluated using an SAT solver. In the formula, features are represented
as variables. If the formula is satisfiable, the SAT solver returns a satisfying example, that is,
a subset of features giving rise to an insecure product. Else, we have proof that the security
requirement is fulfilled in each product.

In the remainder of this section, we present our security checks with their OCL encodings,
we illustrate the generation of a certain formula via template interpretation, and we wrap up.

12.3.1 UMLsec Checks as OCL Constraints

We focus on UMLsec’s Secure Links and Secure Dependency checks [72]. In combination, these
checks support the analysis of security requirements on the physical and logical system levels.
We consider the security requirements secrecy and integrity from Section 3.6.1.

As defined in Section 3.6.1, for the Secure Dependency check two properties have to hold in
a compliant software system:

(i) for all 𝑠 ∈ 𝑆.members: 𝑠 ∈ 𝐶.secrecy ⇔ 𝑠 ∈ 𝑆.secrecy,

(ii) for all 𝑠 ∈ 𝑆.members: 𝑠 ∈ 𝐶.secrecy ⇒ 𝑑 is stereotyped «secrecy», where 𝐶 and 𝑆 refer
to the client and supplier of a «call» or «send» dependency and 𝑠 refers to the signature
of a member.

We specified an OCL version of the Secure Dependency check. For brevity, the illustration
in Listing 12.1 focuses on an excerpt, capturing the “⇒” direction of property (i) and the full
property (ii) of the Secure Dependency check. Also, we show only the secrecy case of this check.
In the full constraint, the opposite direction and the integrity case are considered analogously.
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1 context Model inv :
2 let ca l l S endRe l a t i on s = s e l f . allOwnedElements ( )→select ( e |
3 e→oclIsKindOf ( Package ) and (
4 e . has ( s ecuredependenc i e s ) or se l f . has ( s ecuredependenc i e s )
5 )
6 )
7 →col lect (p | p . allOwnedElements ( )
8 →select (d | d→oclIsKindOf ( Dependency ) ) and (d . has ( c a l l ) or d . has ( send ) )
9 )

10 in ca l l S endRe l a t i on s→forAll ( cs |
11 cs . t a r g e t→forAll ( t rg |
12 t rg→oclIsKindOf ( I n t e r f a c e ) or ( t rg→oclIsKindOf ( Class ) and t rg . has ( c r i t i c a l ) )
13 )
14 and cs . source→forAll ( s r c |
15 s r c . g e tS t e r eo typeApp l i c a t i on s ( c r i t i c a l )→forAll ( s r c C r i t i c a l |
16 s r c C r i t i c a l . g e tSec recy ( )→forAll ( s r cSe c r e cy |
17 cs . has ( s e c r e cy ) and

18 cs . t a r g e t→select ( t rg | t rg→oclIsKindOf ( Class ) )→forAll ( t rg |
19 t rg . getMembers ( )→forAll (mem |mem. getName ( ) <> sr cSe c r e cy )
20 or

21 t rg . g e tS t e r eo typeApp l i c a t i on s ( c r i t i c a l )→exists ( t r g C r i t i c a l |
22 t r g C r i t i c a l . g e tSec recy ( )→exists ( t r gSec r e cy | t r gSec r e cy = s r cSec r e cy )
23 )
24 )
25 )
26 )
27 )
28 )

Listing 12.1: Secure Dependency OCL constraint (secrecy case, excerpt).

Dependencies representing a potential dependency 𝑑 are aggregated on lines 1–9. On lines
1–3, we consider both models and packages, since both concepts may represent subsystems. On
lines 10–13, we check whether the dependency’s target class has a «critical» stereotype so that
the set of secrecy members exists. Note that we use the function ℎ𝑎𝑠 as a shortcut to check
if an element has a particular stereotype. Interfaces do not need to have this stereotype, since
their implementing classes do. On lines 14–27, we iterate over the secrecy-stereotyped members
of the source class to check if the dependency has the required «secrecy» stereotype (line 17),
and if the operation in question is tagged with secrecy in the «critical» stereotype of the
target class, in case it exists. As a simplification of the shown OCL constraint we show instead
of iterating over both getOperations() and getProperties() a method getMembers().

Similar to the Secure Dependency check, we encoded the Secure Links check as an OCL
constraint. The Secure Links is a check concerning the physical deployment of a software sys-
tem. It analyses whether the network of nodes with their communication paths respects the
user-specified security requirements concerning a given attacker model. In what follows, we re-
call a definition [72] for the security requirement «integrity». A corresponding definition for
«secrecy» is obtained by replacing the considered threat with read. The Secure Links check has
been introduced in detail in Section 3.6.1.

A subsystem fulfills Secure Links iff for all «integrity» dependencies d between objects
on different nodes n,m, ∃ communication path p between n and m with a stereotype s so that
write /∈ Threats(s), where Threats(s) is a set of threats posed by an outside attacker to
s-stereotyped communication paths.

We specify the Secure Links check using the OCL constraint in Listing 12.2. The check is
formulated for the UML element model, but we also consider the contained packages on line 3,
since both concepts can be used to represent subsystems. Note that we use the function has as
a shortcut to check if an element has a particular stereotype. In UML, deployment is based on
the notion of artifacts being deployed to a node. On line 7, we assume that artifacts aggregating
some objects and their security requirements have been specified. The set of callSendRelations
computed on lines 2–9 represents the dependencies d of the Secure Links definition. We check
the condition by iterating over node pairs n,m on lines 13–20 and checking if permitted kinds of
communication paths are in place on lines 21–25. Specifically, for «integrity»-stereotyped de-
pendencies, these kinds include precisely LAN, wire, and encrypted. A variant of this constraint
exists for the secrecy case.
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1 context Model inv :
2 let ca l l S endRe l a t i on s = s e l f . allOwnedElements ( )→select ( e |
3 e→oclIsKindOf ( Package ) and e . has ( s e c u r e l i n k s ) or se l f . has ( s ecureL inks )
4 )→col lect (p | p . allOwnedElements ( ) )→select (d |
5 d→oclIsKindOf ( Dependency ) and (
6 (d . has ( c a l l ) or d . has ( send ) )
7 and d . source→oclIsKindOf ( A r t i f a c t ) and d . t a r g e t→oclIsKindOf ( A r t i f a c t )
8 )
9 )

10 in let pathsBetween ( srcNode : Node , trgNode : Node ) : Set ( ComminicationPath ) = srcNode .
getCommunicationPaths ( )→select (comm |

11 comm. getMemberEnds ( )→select ( end | end . getType ( ) = trgNode )→ s i z e ( ) > 1
12 )
13 in ca l l S endRe l a t i on s→ forAll ( cs |
14 cs . source→forAll ( s r c |
15 s r c . getDeploymentRelat ionships ( )→forAll ( srcDep |
16 srcDeployment . getLocat ionNodes ( )→forAll ( srcNode |
17 cs . t a r g e t→forAll ( t rg |
18 t rg . getDeploymentRelat ionships ( )→forAll ( trgDep |
19 trgDep . getLocationNode ( )→forAll ( trgNode |
20 pathsBetween ( srcNode , trgNode )→exists (comm |
21 not ca l lSend . has ( i n t e g r i t y )
22 or comm. has (LAN) or comm. has ( wire ) or comm. has ( encrypted )
23 )
24 )
25 )
26 )
27 )
28 )
29 )
30 )

Listing 12.2: Secure Links OCL constraint (integrity case).

For example, an «Internet»-typed communication path signifies the use of an unencrypted
connection, allowing an outside attacker to perform man-in-the-middle attacks. An «encryp-

tion»-stereotyped communication indicates the use of encryption, shielding from the write

attack by an outside attacker.

12.3.2 Template Interpretation

Template interpretation [301] supports the evaluation of OCL constraints on models in which
model elements are annotated with presence conditions (such models are called model templates
in [301]). The key idea is to replace the standard OCL semantics with a variability-aware one:
The result of evaluating a constraint is not a plain value, but a set of value-formula pairs, where
the formulas specify the condition under which each of the values occurs. This condition, in turn,
depends on the presence conditions of the model elements involved in the constraint. Based on
this set, to find out if a particular value can actually occur, we combine its formula with the
constraints specified in the feature model. We feed the result to an SAT solver to efficiently
check whether the formula can be satisfied.

Since we aim to establish if a particular constraint, representing a security check, holds in
all configurations, we feed the negation of the condition under which it evaluates to true to the
SAT solver. Note that we do not translate OCL constraints into SAT problems, but calculate
all possible outcomes of the OCL constraint execution and the conditions under which they can
occur concerning the feature model.

For instance, to check if a particular class is stereotyped with the stereotype «critical»,
we can evaluate the constraint class.has(critical) on the class. Assuming standard OCL
semantics, the result of this check is true or false. But with template interpretation, we take
presence conditions into account. For the class Prescription in Figure 12.3, the following result
is obtained: {(true, UC37), (false, ¬UC37)}. Similarly, for the class OfficeVisit {(true,

UC37), (false, ¬UC37)} but this time due to the «ConditinalCritical». The paper [301]
explains how to generate such sets of value-formula pairs for arbitrary OCL constraints, including
those with complex operators such as forAll() and size().
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We need to answer the question if an OCL constraint 𝑐 representing a security check sec,
such as Secure Links, on an element 𝑒 holds in all products of a considered SPL. This question
can be represented as the following SAT problem:

𝑠 = 𝑓 ∧ (𝑝*(𝑒) ⇒ ¬𝑐𝑡𝑟𝑢𝑒) (12.1)

Here, 𝑓 is the conjunction of the feature constraints in the feature model, 𝑝*(𝑒) is 𝑒’s extended
presence condition, and 𝑐𝑡𝑟𝑢𝑒 is the condition under which 𝑐 evaluates to true. The extended
presence condition of the element 𝑒 is taken into account as the constraint can only be eval-
uated if the element is part of the software system. For example, considering the constraint
self.getClientDependencies()→size()>1 for the class ViewRecordsPatientAction in Fig-
ure 12.3, we would obtain for the constraint locally on the class that 𝑐𝑡𝑟𝑢𝑒 = U19Patients ∨
Patients. Please note, that the dependency to the class Patient is implicit conditional as the
class Patient is conditional. However, for the existence of the dependencies the presence condi-
tion of class ViewRecordsPatientAction is also a dependency, leading to 𝑐𝑡𝑟𝑢𝑒 = (U19Patients
∨ Patients) ∧ UC9 ∧ UC9 = UC9 ∧ Patients. The feature constraints are taken into account
because they determine the allowed set of configurations. For example, the feature model in Fig-
ure 11.2 contains the constraint Patients ⇐⇒ (UC9 ∨ UC19Patients ∨ UC30 ∨ UC40Patients).
Due to this constraint, we can know that all products that contain the feature UC9 have more
than one outgoing dependency at the class ViewRecordsPatientAction.

The implication allows neglecting irrelevant configurations in which 𝑒 is absent and thus, can-
not violate the constraint. The extended presence condition 𝑝*(𝑒) accounts for the containment
hierarchy: The presence of an element depends on the presence of its container objects. There-
fore, 𝑝*(𝑒) is obtained via the conjunction of 𝑒′𝑠 presence condition with the presence conditions
of its container elements.

The output of evaluating 𝑠 with a SAT solver is either the result that 𝑐 is true in all config-
urations, that is, sec holds in 𝑒 for all products, or a witness, that is, a configuration leading to
a product in which sec is not fulfilled in 𝑒.

12.3.3 Discussion of Correctness and Performance

In this section, first, we discuss the correctness of the presented approach, and second, factors
impacting its performance.

Correctness of the Security Checks: The correctness of template interpretation relies on
the argumentation in [301]. The correctness of our implementation, including the OCL
constraints, was studied by systematic testing. Specifically, we systematically extended
the test cases of the existing implementation with variability: We considered all possible
combinations of annotating the involved elements with variability. The resulting test suite
comprises 54 test cases. As test oracle, we used the existing Java-based implementation
of UMLsec’s checks in CARiSMA, the standard implementation of UMLsec. For a given
SecPL-based test model, we enumerated all products, producing a set of UMLsec models
on which we performed the CARiSMA check. The results of the variability-aware security
check and the single CARiSMA checks were equivalent in all cases, yielding confidence in
the correctness of our analysis.

Performance of the Security Checks: The performance of the overall security analysis de-
pends on the generation of the formula as well as the SAT check. As argued in [301], the
generation procedure has polynomial complexity concerning the size of the input model.
For most of OCL’s operators, the generation is linear; however, in the case of size, it re-
quires quadratic time, since it considers the cross-product of model elements. SAT solving
is NP-complete in general, but state-of-the-art SAT solvers can handle a million variables
and several millions of constraints efficiently [303], which is more than sufficient for typical
product line scenarios.

12.3.4 Extensibility of the Approach

In the previous sections, we introduced a security and variability profile and constraints for
two UMLsec checks on UML product lines. The approach has been designed to allow flexible
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extension according to the needs of a software project. For the extension of the approach, we
identified two dimensions:

Support of Additional Security Checks: We provide OCL encodings for the widely used
UMLsec checks: Secure Links and Secure Dependency [103, 104, 304, 305, 306]. As illus-
trated in the example, in combination, these checks aim to protect secrecy and integrity
on the physical and the logical level. Our solution is extensible in the sense that expert
users can define additional checks by providing additional stereotypes with a corresponding
OCL encoding. These checks can be used by end-users for annotating and checking UML
models transparently, without using or understanding OCL.

Adaptation to Domain-Specific Languages: Our profile, but also extended profiles, can be
applied in combination with domain-specific languages that are based on UML profiles. For
example, a central diagram type in SysML models is block diagrams. The blocks in block
diagrams are elements of the UML type Class with the stereotype «Block». Accordingly,
SysML blocks can own properties, just like classes in class diagrams can do. The properties
in SysML are more fine-grained, reflected in additional SysML-specific stereotypes such as
«AdjunctProperty» or «DistributedProperty». Since the categorization of properties
in these stereotypes is orthogonal to the included security requirements, the Secure De-
pendency check can be applied to block diagrams straightforwardly, by applying both the
SysML and the SecPL stereotypes to the underlying UML model.

As shown in this section, SecPL can easily be extended to cover additional security checks
and to be applicable to different domains.

12.4 Tool Support for Family-based Security Checks of UML
Product Lines

The analysis is implemented as a prototypical plugin for the Eclipse IDE using the Papyrus UML
editor for creating and annotating UML models. During the task of annotating UML models,
the user is supported with well-formedness checks of presence conditions, an overview of feature
usages in the UML model as well as the option to execute our check on all products. Figure 12.7
shows a screenshot of the Papyrus UML editor in the Eclipse IDE and the SecPL tool support
for specifying UML product lines. In the center of the figure, the iTrust model excerpt from
Figure 12.3 is shown in the Papyrus editor. At the bottom of the figure, the SecPL extension is
shown. The SecPL Features view contains a list of all features defined in the FeatureIDE model
of the project. In this case, this is the feature model from Figure 11.2 used as an example in
this chapter. The view shows for every feature if it is currently used in the UML product line or
not. Also, for every feature, the location of the usage and the corresponding presence condition
can be shown. For example, the feature Patients is used in two locations. Both times in a
«Conditional» stereotype on the classes Patient and ViewRecordsPatientControl. On top
of the view, the number of possible configurations and whether security violations have been
found using the SecPL checks. When introducing the feature model, we mentioned that there
are 528 possible configurations of the feature model but in Figure 12.7 it is stated that there are
464 possible configurations. This is due to the feature of analyzing partial configurations. In
this case, the feature Patients is selected by a checkmark meaning that only the configurations
containing the feature Patients are considered. This allows to first only focus only on partial
configurations at the development and broaden the scope afterward.

To allow developers to actively trigger the SecPL checks or to integrate them into a continuous
integration pipeline we integrated the SecPL checks into the CARiSMA tool. Figure 12.8 shows
the integration of SecPL into CARiSMA. In the figure’s center, we can see a CARISMA analysis
configuration file. In this file, besides the fair exchange of the classic CARiSMA implementation,
the two SecPL checks are added to the configuration. For the current execution, which can be
triggered by clicking on the RUN button, only the SecPL Secure Links check is selected. The
results of this execution are shown in the Analysis Results view at the figure’s bottom.

Since our OCL constraints are formulated in a rather coarse-grained fashion, based on the
model- and package-level, determining the root cause of a failed check can be a non-trivial task
for developers. However, for debugging purposes, developers can use the produced witnesses to
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Figure 12.7: Papyrus UML editor with SecPL Features View showing usages
of features in UML product lines.

Figure 12.8: Integration of SecPL into CARiSMA.



12.5. Evaluation of SecPL 233

Figure 12.9: Detection of a Security Violation using SecPL

inspect a single product where the issue occurs, rather than the full SPL representation. During
this task, she can use full-fledged tool support, e.g., as provided by CARiSMA [227], for the
analysis of the detected insecure product. If a product with security violations is detected, the
standard UMLsec check is automatically executed on this product to generate detailed error
messages, using the standard implementation of UMLsec by the CARiSMA tool. The user
interface for this task is shown in Figure 12.9. To produce a security violation, we changed to
presence condition of the «ConditionalCritical» on the class ViewRecordsPatientControl to
be more restrictive for the signature prescription:Prescription on the security level secrecy.
As we can see in the SecPL Features view, the iTrust UML product line now contains at least
one security violation and one configuration containing a violation is stated (𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑠 ∧ 𝑈𝐶9 ∧
𝑈𝐶11 ∧ 𝑈𝐶37). The UML product for this configuration is automatically generated and the
default CARiSMA Secure Dependency check is executed on this product. Details on the violation
in the product are shown as before in the Analysis Results view of CARiSMA. In this case,
the changed presence condition lead to the class ViewRecordsPatientControl not specifying
prescription:Prescription on the security level of secrecy in this product.

12.5 Evaluation of SecPL

We designed a methodology for specifying and analyzing security requirements in software prod-
uct lines. In this section, we evaluate the following aspects of our methodology:

• O1śEfficiency To what extent does our family-based analysis improve the efficiency of
the security analysis?

• O2śScalability How does our analysis scale to product lines with large feature models
and domain models?

• O3śUsefulness Is our methodology easily understandable, usable, and applicable to real-
istic software engineering projects?

For this evaluation, we use the prototypical implementation of the SecPL analysis presented
in the previous section. We performed all experiments on a Windows 10 PC with an Intel i5-
3570K, 8 GB of RAM, and Oracle JDK 8 inside of an Eclipse Neon.3 instance which was allowed
to allocate up to 6 GB memory.

12.5.1 O1śEfficiency of the Security Checks

To evaluate our methodology based on realistic subjects, we collected a suite of models suitable for
our security- and variability-oriented setting. The collection was performed based on convenience
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Table 12.1: Subjects of the efficiency evaluation of the variability-aware secu-
rity checks.

Project name Input artifacts #Elements #Call #Features #Products

BMW Magazine article 116 13 16 54
E2E UMLsec models 130 14 7 94
BCMS UML models 3,034 4 8 254
JSSE Java 24,077 28 6 64
Notepad Java + Antenna 252 4 13 512
MobilePhoto Java + Antenna 4,069 35 13 3,072
Lampiro Java + Antenna 29,045 24 20 5,892

sampling, in most cases by reusing evaluation samples from the existing literature on software
product lines and model-based security. We give an overview of our subjects in Table 12.1 with
relevant information, including the number of dependencies with «call» and «send» stereotypes,
since they are a key part in both considered checks. The models stem from a variety of sources
that can be divided into two groups.

The first group represents original modeling examples. First, we created a model based on
the description of the in-car system of BMW. Second, we used a UMLsec scenario obtained from
the CARiSMA developers from their prior collaboration with an industry partner and extended
it with variability: EndToEndEncryption (E2E) is based on a set of system models specifying
different versions of Munich Re’s IT infrastructure [307]. For our evaluation, we refactored
those models into a product line. Third, the Barbados Car Crash Management System (bCMS)
[308] is based on a requirements specification of the car crash management system SPL. For our
evaluation, we used an available UML implementation in the form of enumerated products [309]
and manually refactored it into a SecPL model. While the bCMS model is relatively large, only
a small part of the model required security annotations, resulting in four relevant calls.

The second group is made up of projects from the open-source Java context. As discussed in
Section 11.4, we produced SecPL models by applying our reverse engineering mechanism to the
available codebases. We consider OpenJDK’s implementation of the Java Secure Socket Exten-
sion (JSSE ), a particularly interesting security-critical scenario. Besides variability annotations,
we added security annotations based on security-critical keywords like “keystore”. Notepad [289]
is a text editor in which the opening and writing of files are security-critical. For example, many
iOS apps have been infected by a corrupted editor [310]. MobilePhoto [291] is a mobile multi-
media platform supporting for sharing media over an Internet connection. Lampiro [292] is an
instant messaging client which has been naively developed as a software product line. In these
cases, we added security annotations to the codebase and propagated these into the models at
reverse engineering.

Setup. We experimentally evaluated the efficiency of our analysis using the models described
above, using the state-of-the-art tool, CARiSMA, as a baseline. For each model, we compared
the execution time for checking the SecPL model using our analysis (SecPL check) to the sum of
the execution times for checking all products using CARiSMA, which supports regular UMLsec
checks on single products (product-wise check). In both cases, we measure the timespan from
loading a UML model with SecPL stereotypes to the delivery of the analysis results for all
products. Our analysis is more efficient if the execution times of the SecPL implementation are
significantly lower than those of CARiSMA.

Results. The product-wise check produced a result for five out of seven subjects, BMW, E2E,
BCMS, JSSE, and Notepad. In these cases, the SecPL checks were between one and three orders of
magnitude faster. For the subjects MobilePhoto and Lampiro, the product-wise check terminated
with a garbage collection (GC) overhead exception after 700 to 1,000 checked products and 3
to 5 hours of run time, whereas the SecPL checks took below 100 seconds. On average, the
product-wise check spent 91.6% of the time generating the products, and the remaining 8.4%
performing the checks. We observed that the run time of the product-wise check mainly depends
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Figure 12.10: Execution times of the family-based SecPL check and the
product-wise check with CARiSMA.

on the number of products, whereas the SecPL check is mainly influenced by the model size and
the number of relevant calls. In sum, SecPL outperformed the product-wise check constantly.

O2śScalability of the Security Checks

For our scalability evaluation, we needed to freely control the size of our test models. To this
end, we generated synthetic models. Our rationale was to create models being representative of
realistic examples, which we address as follows.

To study the effect of the model size, we generated large class models, being amenable to
the Secure Dependency check. Based on typical cases in the security-critical portions of the
realistic examples, we incrementally added classes with on average four operations and three
dependencies. Our initial model contained two classes with one call dependency between them
and one operation each. In each iteration, we added a class with a «critical» stereotype and a
normally distributed number of operations, on average four, and a normally distributed number
of dependencies, on average three. We added all member signatures of classes reachable over
a dependency to the secrecy tag of the class’s «critical» stereotype. The resulting model is
potentially expensive to check:

(i) it comprises many involved dependencies and operations, and

(ii) since it fulfills Secure Dependency, every class treats all relevant signatures with secrecy,
the check does not terminate early with a counterexample.

To study the effect of the feature model size, we took a randomly generated UML model
from the model-size experiment with 4K classes, incrementally added independent features to
the feature model successively, and assigned each feature to one class in the model via a suitable
«conditional» stereotype. We checked models annotated with between zero and 4K features,
adding 50 features in each iteration.

Setup. To experimentally evaluate scalability, we measure the execution times of our SecPL
implementation on different synthetic models with a growing number of model elements and
features as described above. Our analysis is scalable if the execution time avoids exponential
growth for increasingly larger domain models and feature models.

Results. In our scalability experiment regarding model size, the largest generated model we
checked had 524K UML elements, including 66K classes with an average number of four opera-
tions and three call dependencies to other classes. As shown in the upper part of Figure 12.11
the execution of this test case took 97.3 minutes. The regression function we calculated from
these measurements is a second-order polynomial and fits the measured data with a coefficient
of determination (𝑅2) of nearly one (0.999985). This observation is in line with the performance
considerations for template interpretation. For our scalability experiment regarding the number
of features, we used a randomly generated model with 4K UML classes (32K UML elements)
and successively added up to 4K independent features (1.04 · 101233 products). The measured
data points as illustrated in Figure 12.11 show a higher variance compared to those from the
previous experiment. The analysis took between 57 and 58 seconds up to 1.7K features and
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Figure 12.11: Scalability results of SecPL regarding Number of Classes and
Number of Features.

started oscillating between 58 and 60 seconds until around 4K features. In sum, our analysis
showed scalable behavior up to thousands of features, the magnitude of large product lines in
automotive engineering [295].

12.5.2 O3śUsefulness of the Tool Support and Security Checks

To evaluate the usefulness of our methodology, we conducted a user experiment with participants
from academia and industry.

Setup. We recruited nine participants from academia, two of them with a significant industrial
background, and one representative of an industry partner. The participants from academia came
from three universities and one private research institute and had their focus on security, SPL,
and modeling domains. The industry-experienced academics had long-running backgrounds as
IT freelancers. Moreover, one of them was employed at a large steel-based technology group at
the time of the experiment. The industry partner, SinnerSchrader, is Germany’s fourth-largest
digital marketing company and cooperates with many major international companies.

After a short introduction to SecPL, we asked the participants to perform a development task
based on an in-car system oriented on a BMW system described in the literature [311]. This
software system allows users to unlock their BMW car using a mobile application. It has been
shown that sensitive data is released in error messages if a specific modem has been selected in
the car product line. The task was to extend a provided UML model of this software system
with a new alternative modem type by using our tool prototype while addressing the included
security requirements. Afterward, the participants filled in a questionnaire in which they rated
their subjective experience in eight questions based on a five-point Likert scale. Five questions
addressed usability concerns, such as the difficulty of specifying a new security requirement; three
questions were concerned with understandability, such as the certainty that the participant’s
understanding of the used stereotypes was correct. We provide a replication package including
the task, questions, and results together with the submission.

After the experiment, we conducted informal interviews with all participants, in which
we asked for feedback concerning usability and understandability. In the interviews with the
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Figure 12.12: Aggregated answers from the user study regarding the usability
and understandability of SecPL.

industry-based and -experienced participants, we additionally asked them to comment on the
applicability of our methodology to their business segments and those of their customers.

Results. In what follows, we discuss the results of our evaluation regarding the usefulness of
the proposed approach. First, we discuss the approach’s usability and understandability. Next,
we discuss the practical applicability of the approach.

Usability and Understandability: The answers to our questions indicate that our method-
ology is easily usable and understandable. According to Figure 12.12 in both categories,
more than 70 percent of the answers suggest a high or very high usability and under-
standability, an impression confirmed by the feedback in the interviews. On the downside,
some participants perceived the editing of annotations through Papyrus’s user interface
as cumbersome, as reflected by some of the negative scores for usability. Moreover, some
participants were worried that a larger model “cluttered” with annotations may become
hard to read. A promising strategy to deal with these issues is by providing improved tool
support, for example, to support the editing of large models based on custom-tailored views
[312], including views on individual products of the product line [313]. A further question
raised by participants was where to start when annotating the model with security require-
ments. To this end, approaches analyzing higher-level security specifications and suggesting
SecPL security annotations can be helpful [73]. Moreover, a textual UML notation may
further help to improve usability. Despite the mostly positive understandability ratings,
one participant reported considerable problems while understanding the stereotypes. An
interactive help system may help to further improve understandability.

Practical Applicability: According to our industry partner’s representative, our notation for
specification and analysis of security requirements on product lines is an accurate fit for
their business needs. As an example for a possible application, they mentioned a current
collaboration in the automotive domain on real-time car software upgrades based on chang-
ing customer needs. They want to dynamically advertise and sell upgrades according to
customers’ needs by dynamically reconfiguring the car, e.g., to sell the usage of the trailer
hitch for some days when the customer is relocating. The specification and analysis of secu-
rity requirements on software product lines are essential for this concept. The participant
deemed our graphical notation on UML models as a possibility to realize the specification
in a user-friendly way.

One of the industry-experienced participants conjectured that our approach might be very
helpful for developers familiar with modeling, but felt that he was not proficient enough in
this topic to really judge applicability.

The other industry-experienced participant, who is also employed for a steel-based technol-
ogy group, stated that our methodology could be used for coordinating the development
of security-critical software in multiple distributed teams. If the project has been planned
using UML, specially trained team members can easily annotate the models with required
and provided security levels of class members. However, for direct use in industry, the tool
support has to be improved; distributed and parallel editing of UML models has to be
supported. Nevertheless, he pointed out that these are general issues with model-based de-
velopment, and that they are by no means necessarily aggravated by incorporating SecPL.

To conclude, these first impressions give a promising outlook on the applicability of our
methodology in the industry. Since we do not require any artifacts beyond those involved in
typical software development processes, our participants found that an alignment of our method-
ology with these processes seems generally possible.
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12.6 Threats to Validity

In this section, we discuss threats to validity according to four categories of threats.

12.6.1 External Validity

External validity is threatened by our limited selection of models that may not be representative
of all realistic models. While our suite of test subjects selected for O1 represents a broad variety
of use cases, we cannot generalize our findings to arbitrary models. The models generated for
our scalability measurements in O2 were inspired by the realistic ones used to evaluate O1; their
purpose was to illustrate the effect of increased model size and feature number. The model in
O3 is by no means representative for all possible usage contexts; however, it was chosen as a
critical example inspired by a real case. Also, we performed the experiment only with a limited
number of expert users.

12.6.2 Internal Validity

Regarding internal validity, a potential threat concerns the correctness of our implementation.
In Section 12.3, we argued for the correctness of our OCL implementations of the considered
UMLsec checks by using CARiSMA as a test oracle. Since both implementations were developed
independently from another, the identical results from the test suite give us a high level of
confidence in the correctness of our implementation. For additional user-specified constraints,
correctness has to be ensured as well, for example, by providing a similar test suite. Moreover,
while we aimed to systematically specify all security requirements in the considered examples,
we cannot guarantee the completeness of our security annotations.

12.6.3 Conclusion Validity

Concerning conclusion validity, a more definitive verdict on the practical applicability of our
methodology requires the involvement of a larger sample of practitioners. To this end, the
conduction of a broader developer survey in the future could help to prove or disprove our
conclusion. In particular, we did not evaluate if users can work with our reverse-engineered
models effectively, which depends on the employed model editor’s usability during the editing of
larger models.

12.6.4 Construct Validity

Regarding construct validity, our methodology is based on existing technology, such as template
interpretation and the Papyrus UML editor, which also impact its applicability. Our evaluation
assesses the applicability of these techniques in the domain of software security, which has not
been done in previous work. Moreover, to the best of our knowledge, we also provide the first
evaluation of a template-interpretation-based technique on a set of realistic models.

12.7 Conclusion on Security in UML Product Lines

Security is one of the hardest properties of software to accomplish in practice. With this work, we
provide a comprehensive methodology for the model-based security analysis of software product
lines. We extended our UML variability extension to also support variability within UMLsec
security requirements. Using the SecPL profile, users specify security requirements as well as
variability information as part of the design-time system models. Furthermore, we investigated
how we can detect security violations on the UML product lines without iterating over all prod-
ucts. For this purpose, we specified UMLsec checks as OCL constraints and evaluated these
using a template interpretation technique of Czarnecki et al. [301]. This way, our analysis ad-
dresses the scalability issues encountered in this setting by lifting the analysis to the level of the
entire product line rather than individual products. In our evaluation, this solution enabled the
analysis of realistic product lines in realistic cases where the naive approach terminated without
a result; a user study indicates the usefulness of our methodology.
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In the future, our work can mainly be extended in two directions. First, our methodology
can be applied to a broader selection of use cases. Since UMLsec has been used in protocol
engineering [102], a promising application involves protocol families. Second, an extended form
of our analysis could inform the automated configuration of a product line, e.g., by considering
the established security degree and the cost for security measures to assess solutions.
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Chapter 13

Security Compliance and

Restructuring in Variant-rich

Software Systems

This chapter shares material with the FASE’2018 publication łTaming Multi-Variability of Soft-
ware Product Line Transformationž [314] and łA Staged Technique for Software Product Line
Transformationsž submitted for publication.

In the previous chapter, we discussed the specification and verification of security require-
ments on UML model product lines. With this contribution, we reached the state at which we
started at the beginning of this thesis for single-product software systems. We have the means
to specify and verify UMLsec security requirements in product lines but the verification of these
requirements on the implementation is missing. Also, the maintenance support of GRaViTY,
e.g., security-preserving refactorings, has not been transferred to software product lines, yet.

In general, despite the benefits of software product lines, a growing amount of variability
leads to combinatorial explosions of the product space and, consequently, to severe challenges.
Notably, this applies to software engineering tasks such as refactorings [315], refinements [316],
and evolution steps [317], which, to support systematic management, are often expressed as
model transformations. In this thesis, we used model transformations for security-preserving
refactorings in Chapter 10 and to specify security violation patterns in Section 8.6. The open
challenge is the application of these model transformation rules to software product lines as part
of the GRaViTY development approach. In this chapter, we provide an approach that allows the
application of the security violation patterns and security-preserving refactorings to variant-rich
software systems. By doing this, in combination with the previous chapters’ contributions, we
answer RQ5 to its full extend.

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

To be more precise, following Figure 13.1, by applying the security violation patterns to
software product lines, in addition to Chapter 12’s answer concerning UML product lines, we
answer RQ5.2 for the program model. As the program model is a representation for analyzing
the source code, we also answer this research question for the implementation. Together with the
UML model-level security check from Chapter 12, we answer RQ5.2, entirely covering design-
time models and the implementation of variant-rich software systems. Using the same approach,
we can apply the security-preserving refactorings to software product lines and answer RQ5.3.

RQ5.2: How can security violations be detected on SPLs?

RQ5.3: How can we apply security-aware refactorings to SPLs?

To be more precise, our answers to RQ5.2, in terms of applying security violation patterns
to SPLs, and RQ5.3, of how to apply refactorings to SPLs, are specific instances of the general
problem of applying multi-variant transformation rules to SPLs. In this chapter, we provide a
generic solution to this problem and demonstrate this solution on the two examples.

Generally, when applying a given model transformation to a software product line, a key
challenge is to avoid enumerating and considering all possible products individually. To this end,
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Figure 13.1: Concept including security-compliance checks and restructurings
in variant-rich systems.

Salay et al. [318] have proposed an algorithm that “ lifts” regular transformation rules to a whole
product line. The algorithm transforms the SPL, represented as a variability-annotated model,
e.g., using SecPL or the variability annotations for the program model, in such a way as if each
product had been considered individually.

Yet, in complex transformation scenarios as increasingly found in practice [319], not only
the considered models include variations but the transformation system can contain variability
as well, for example, due to desired optional behavior of rules, or for rule variants arising from
the sheer complexity of the involved meta-models. While several works [320, 321, 322] support
systematic reuse to improve maintainability, variability-based model transformation (VB) [323,
324] also aims to improve the performance when a transformation system with many similar rules
is executed. To this end, these rules are represented as a single rule with variability annotations,
called VB rule. During rule applications, a special VB rule application technique [261] saves
redundant effort by considering common rule parts only once. In Chapter 10, we used these
VB rules to specify variability in refactorings, e.g., regarding possible targets of Move Method
refactorings. In summary, for cases where either the model or the transformation system alone
contains variability, solid approaches are available.

However, a more challenging case occurs when a variability-intensive transformation is applied
to an SPL, e.g., the refactorings formalized using graph transformation in Section 10.2. In this
multi-variability setting, where both the input model and the specification of a transformation
contain variability, the existing approaches fall short to deal with the resulting complexity: One
can either consider all rules, so they can be “lifted” to the product line, or consider all products,
so they become amenable to VB model transformation. Both approaches are undesirable, as
they require enumerating an exponentially growing number of artifacts and, therefore, threaten
the feasibility of the transformation.

In this chapter, we introduce a methodology for SPL transformations inspired by the uni-
formity principle [325], a tenet that suggests handling variability consistently throughout all
software artifacts. We propose to capture the variability of SPLs and transformations using
variability-annotated models and rules. Model and rule elements are annotated with presence
conditions, specifying the conditions under which the annotated elements are present. The
presence conditions of model and rule elements are specified over two separate sets of features,
representing SPL and rule variability. Annotated models and rules can be created manually
using available editor support [326, 327], or automatically from existing products and rules by
using merge-refactoring techniques [328, 329].

Given an SPL and a VB rule, as shown in Figure 13.2, we provide a staged rule application
technique (black arrow) for applying a VB rule to an SPL. In contrast to the state of the
art (shown in gray), enumerating products or rules upfront is not required. By adopting this
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technique, existing tools that use transformation technology, such as refactoring engines, may
benefit from improved performance. Specifically, we make the following contributions:

• We introduce a staged technique for applying a VB rule to an SPL. Our technique combines
core principles of VB rule applications and lifting while avoiding their drawbacks regarding
enumerating all products or rules upfront.

• We present an algorithm for implementing the rule application technique, which supports
efficient rule applications by relying on state-of-the-art SAT solvers.

• We evaluate the usefulness of our technique by studying its performance in a substan-
tial number of cases within two software engineering scenarios including the refactorings
introduced in Chapter 10.

Our work builds on the underlying framework of algebraic graph transformation (AGT) [142].
AGT is one of the standard model transformation language paradigms [330]; in addition, it
has recently gained momentum as an analysis paradigm for other widespread paradigms and
languages such as ATL [331]. We focus on the annotative paradigm to variability. Suitable
converters to and from alternative paradigms, such as the composition-based one [313], may
allow our technique to be used in other cases as well.

In what follows, first, we introduce our application scenario in terms of a state machine from
the iTrust SPL as well as a UML refactoring rule in Section 13.1. Afterward, in Section 13.2,
we introduce our multi-variant transformation approach. In Section 13.3, we introduce our im-
plementation of the multi-variant transformation as an extension of the Henshin transformation
engine. We evaluate this approach in Section 13.4 regarding performance in two realistic scenarios
including the refactorings introduced in Chapter 10. Finally, we discuss threats in Section 13.5
and conclude in Section 13.6.

13.1 Application Scenario

In this section, first, we introduce an exemplary product line within our iTrust running example,
and second, a refactoring product line for UML models.

13.1.1 iTrust example SPL

As the iTrust application scenario for this chapter, we consider a state machine from iTrust’s
design-time models. This state machine specifies the states during the treatment of a patient
within a hospital using iTrust. The core states are oriented on an example from [332] but
have been simplified and adapted to iTrust. Generally, the treatment of a patient involves four
states. First, the patient is admitted to the hospital. Afterward, the patient is in the state of
diagnosis in which doctors inspect the patient to find the reasons for her health issues. After
the patient has been diagnosed, the treatment starts. Finally, when the patient has recovered,
she is discharged.

Figure 13.3 shows a simplified state machine product line for the treatment of a patient using
iTrust. Unlike the example in [332], we do not consider cases of patients deploying additional
symptoms or detailed triggers for state changes. In our example, we included variations of the
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Figure 13.3: State machine showing the states of a patient’s treatment.

state machine depending on how the iTrust SPL is deployed. To be more precise, we considered
the following three optional features:

physiatry: A custom-tailored version of iTrust has been developed for a customer operating
a physical medicine and rehabilitation clinic, also known as physiatry. This physiatry is
integrated into a bigger hospital and therefore does not the ability to create diagnoses but
relies on the diagnoses created by the hospital. To keep the system’s user interface simple
and reduce the attack surface, iTrust can be deployed without the functionality to edit
diagnoses. Instead, the functionality to import diagnoses from an external source, e.g., the
hospital into that the physiatry is integrated, has been added.

external: The functionality to import diagnoses from external sources, that has been developed
for the physiatry, has been used to support the general import of diagnoses from other
hospitals. If the imported diagnosis is plausible, the diagnosis state can be bypassed and
the treatment can be started immediately. Whenever a patient enters the treatment state,
a checkup has to be performed. As diagnoses are necessary in case the imported diagnosis
is not plausible, this feature cannot be combined with the physiatry feature.

specialist: The third optional feature allows treatment by external specialists as part of the
treatment. If treatment by external specialists is supported, after the regular treatment,
patients can be handed over to a specialist. In this case, patients enter an additional state
before being discharged.

Concrete products can be obtained from configurations in that each optional feature is either
set to true or false. A product arises by removing those elements whose presence condition
evaluates to false in the given configuration. For instance, selecting external and deselecting
physiatry and specialist yields the product shown in the right of Figure 13.3. Since all
features are optional and physiatry excludes external, the SPL has six configurations and
products in total.

13.1.2 Rule Variants

In complex model transformation scenarios, developers often create transformation rules that are
similar but different from each other. For example, the refactorings introduced in Chapter 10
had similar base parts but different variations, e.g., regarding possible target classes of Move
Method refactorings or security constraints.

As a simpler example, consider the two refactoring rules foldEntryActions and foldExit-

Actions (Figure 13.4), called A and B in short. These rules express a “fold” refactoring for state
machine diagrams: if a state has two incoming or outgoing transitions with the same action,
these actions are to be replaced by an entry or exit action of the state. The rules have a left- and
a right-hand side (LHS, RHS). The LHS specifies a pattern to be matched to an input graph,
and the difference between the LHS and the RHS specifies a change to be performed for each
match, like the removing of transition actions, and the adding of exit and entry actions.
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Figure 13.5: Feature model of the Move Method refactoring rule, including
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In addition, both rules each contain two Negative Application Conditions (NACs, [334]). Intu-
itively, a NAC specifies a particular pattern whose presence is forbidden, yielding a precondition
that needs to be fulfilled to render the rule applicable at a given place in the model. NAC1 of rule
A specifies that the state receiving the entry action, identified with x, may not already have an
entry action. NAC1 of rule B specifies the equivalent condition for exit instead of entry actions.
These NACs are required in state machine diagrams that only support one entry and exit action
per state. In both rules, NAC2 specifies that the target state may not be a complex state, which
is a state nesting sub-states. These NACs are required to enforce a general policy that such
complex states may not have entry or exit actions since the actual entry and exit action would
be performed within the nested states. NACs are considered in conjunction, that is, the rule is
only applicable if both NACs are satisfied.

13.1.3 Variability-based Model Transformation

Rules A and B are simple; however, in a realistic transformation system, the number of required
rules can grow exponentially with the number of variation points in the rules. An example of
these is the security constraints for refactorings discussed in Section 10.3.2. Figure 13.5 shows
the Move Method refactoring’s feature model, including all security constraints introduced in
Section 10.3. Only the application conditions avoiding the increase of a method’s visibility
when moving the method to another class (feature visibilities and its child features) and the
semantic-preserving features (targets and its child features) already result in 20 variants of this
refactoring rule. The four additional security constraints for moving methods only to critical
classes introduced in Section 10.3.2 are not included yet. For these, we have four additional
application conditions per considered UMLsec security level. As two of these conditions are
exclusive, these can be represented by one feature, e.g., secrecy for the secrecy case of the
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Table 13.1: Approaches for dealing with multi-variability.

Independent combinations

Approach Example General case

Naive 12 2#F𝑃 * 2#F𝑟

VB transformation [324] 6 2#F𝑃

Lifting [318] 2 2#F𝑟

Staged application (new) 1 1

conditions. In the end, these can be compared to three possible configurations for each security
level. Assuming the three security levels secrecy, integrity, and high of UMLsec, there are 64
variants of these constraints. In combination with the visibility constraints, we get 1,264 variants
of the Move Method refactoring. To avoid such a combinatorial explosion, a set of variability-
intensive rules can be encoded into a single representation using a VB rule [329, 324].

A VB rule consists of an LHS, a RHS, a feature model specifying a set of interrelated rule
features, and presence conditions annotating LHS and RHS elements with a condition under
which they are present. Individual “flat” rules are obtained via configuration, i.e., binding each
feature to either true or false.

The VB rule A+B, shown in Figure 13.6, is equivalent to the individual rules A and B. Notably,
nodes, edges, and the negative application conditions NAC1 and NAC2 each have a presence con-
dition. The scope of these presence conditions is generally the entire NAC. (A possible design
alternative would be to annotate individual NAC elements with presence conditions. However,
this option’s practical usefulness is limited by semantic complications related to the notion of
"subrule", which we will discuss later.) The feature model specifies a root feature refactor

with alternative child features foldEntry and foldExit. Since exactly one child feature has
to be active at one time, two possible configurations exist. The two rules arising from these
configurations are isomorphic to rules A and B.

13.2 Multi-Variant Model Transformation

Usually, we design model transformations such as foldActions but also the refactorings intro-
duced in Chapter 10 or the security violation patterns from Section 8.6 for applications to a
concrete software product represented by a single model. However, in various situations, it is
desirable to extend the usage context to a set of models collected in an SPL. For example, during
the batch refactoring of an SPL, all products should be refactored uniformly.

Variability is challenging for model transformation technologies. As illustrated in Table 13.1,
products and rules need to be considered in manifold combinations. In our example of refactoring
of the state machine from the iTrust SPL, without dedicated variability support, the user needs
to specify 6 products and 2 rules individually and trigger a rule application for each of the 12
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Figure 13.7: Staged rule application of a VB rule to a product line.

combinations. A better strategy is enabled by VB model transformation: by applying the VB
rule A+B, only 6 combinations need to be considered. Another strategy is to apply rules A and
B to the SPL by lifting [318] them, leading to 2 combinations and the biggest improvement so
far. Still, in more complex cases, all of these strategies are insufficient. Since none of them
avoids exponential growth along with the number of optional SPL features (#𝐹𝑃 ) or optional
rule features (#𝐹𝑟), the feasibility of the transformation is threatened.

13.2.1 Solution Overview

A variability-based rule, e.g., the specification of a refactoring, represents a set of similar trans-
formation rules, while a product line represents a set of similar models. Variability-based rule
application allows us to save matching effort by considering shared parts of rules to a graph only
once. We can show that the sets of partially and fully flattened rule applications are equivalent.

For every fully flattened (FF) rule application, we can find a corresponding partially flattened
(PF) one, and vice versa: Given a FF rule application at a base-match, we compose the base-
match with the product inclusion into the model to obtain a match into the model. Per Theorem
2 in [324], a match induces a VB match and rule application. From a diagram chase, we see that
the base-match is the morphism arising from rerouting 𝑚𝑐 onto the product 𝑃𝑖. Consequently, the
rule application is PF. Conversely, a PF variability-based rule application induces a corresponding
FF rule application by its definition.

Lifting takes a single rule and applies it to a model and its presence conditions in such a way
as if the rule had been applied to each product individually. The considered rule in our case is
a flat rule with a match to the model.

The key idea of lifting a variability-based rule to a product line is as follows: each match of
a flat rule to a product includes a match of the base rule into the model. The absence of such
a match implies that none of the rules has a match, allowing us to stop without considering
any flat rule in its entirety. Such exit point is particularly beneficial if the VB rule represents a
subset of a larger rule set in which only a few rules can be matched at one time. Conversely, if
a match for a base rule exists, a rule application arises if the match can be rerouted onto one
of the products. In this case, we consider the flat rules, saving redundant matching effort by
reusing the matches of the base rule.

We propose a staged rule application technique for applying a VB rule to an SPL to address
this situation. As shown in Figure 13.7, this technique proceeds in four steps discussed below.
Each step has a success case (arrows labeled with a checkmark) and an exit case (arrows labeled
with a cross). Exit cases lead to immediate termination of the rule application.

• In step 1, we consider the base rule, that is, the common portion of rules encoded in the
VB rule, and match its LHS to the full model, temporarily ignoring its presence conditions.
For example, considering rule A+B, the LHS of the base rule contains precisely states x1, x2,
and x. A match to the model is indicated by dashed arrows. Using the presence conditions,
we determine if the match can be mapped to any specific product.
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• In step 2, for each prematch, we consider the base rule NACs, that is, the VB rule’s NACs
that do not have an explicit presence condition, equivalent to the presence condition true.
For a given prematch, we check a subset of the base rule NACs (which we characterize in
this paper) that can be checked at this point. Prematches that do not fulfill these base rule
NACs are filtered out. Our example prematch fulfills the one relevant NAC (NAC3) since
treatment does not nest any substates; hence the NAC is fulfilled. If any prematches are
remaining after filtering, we are in the success case; otherwise, the exit case is reached.

• In step 3, we extend the identified prematches of the base rule to identify prematches of
the rules encoded in the VB rule again ignoring presence conditions. In the example, we
would derive rules A and B; in general, to avoid fully flattening all involved rules, one can
incrementally consider common subrules. An example prematch is denoted in terms of
dashed lines for the mappings of transitions and actions. If we obtain a non-empty set of
prematches, we are in the success case, otherwise in the exit case.

• In step 4, to perform rule applications based on identified prematches, we use lifting to
apply the rule for which the match was found. Lifting transforms the model and its
presence condition in such a way as if each product was considered individually. In the
process, it also checks a remaining condition that renders the prematches proper matches
(discussed later). In the example, only products for the configuration {external=true;
previous=false} are amenable to the foldAction refactoring. Consequently, the new
entry action assignHCP has the presence condition external ∧ ¬physiatry, and other
presence conditions are adjusted accordingly. During lifting, a certain condition is checked.
The condition determines if the match can be mapped to any specific product (based on
the model’s presence conditions) so that all NACs of the flattened rule are satisfied. If none
of the considered matches fulfills these conditions, the exit case is reached. Otherwise, we
are in the success case.

Performance-wise, the main benefit of this technique is twofold: First, using the termination
criteria, we can exit the matching process early without considering the specifics of products
and rule variants. This early termination is particularly beneficial in situations where none or
only a few rules of a larger rule set are applicable most of the time, which is typically the case,
for example, in translators. Second, even if we have to enumerate some rules in step 2, we
do not have to start the matching process from scratch, since we can save redundant effort by
extending the available base matches. Consequently, Table 13.1 gives the number of independent
combinations (in the sense that rule applications are started from scratch) as 1.

13.2.2 Multi-Variant Transformation Algorithm

We present an algorithm for implementing the VB rule 𝑟’s staged application to a product line 𝑃 .
The main idea is to proceed in four steps:

1. First, we match the base rule of 𝑟 to the model, ignoring presence conditions, obtaining a
set of prematches.

2. Second, we check certain NACs of the base rule on the prematches to filter out those
prematches with violations.

3. Third, we consider individual rules as far as necessary to obtain prematches to the model.

4. Fourth, based on the matches, we perform the actual rule application using the lifting
algorithm from [318] in a black-box manner.

Algorithm 4 shows the computation in more detail. Our formalization so far supports the
checking of NACs as part of the lifting phase. In that phase, we consider an individual flattened
rule 𝑟𝑐 to which we apply Sayal et al.’s lifting operator, which is geared for dealing with NACs,
including those of 𝑟𝑐. In our multi-variability scenario, relying on lifting leads to a sound, but
not necessarily efficient solution: it might lead to considering many flat rules arising from the
VB rule individually, only to discover late in the process that none of these rules is applicable,
due to NACs being not fulfilled.
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Algorithm 4: Staged application of a VB rule to a product line.
Input : Product line P, VB rule 𝑟
Output: Transformed product line 𝑃

1 precheckBaseNACs := precheckBaseNACs(𝑟);
2 BMatches := findPreMatches(Model𝑃 , 𝑟0);
3 foreach 𝑚𝑏𝑎𝑠𝑒 ∈ BMatches do
4 BNACMatches := findNACMatches(Model𝑃 , 𝑚𝑏𝑎𝑠𝑒, precheckBaseNACs);
5 Φ𝑝𝑐 :=

⋀︀
{ pc ∈ pcs(𝑚𝑏𝑎𝑠𝑒) };

6 Φ𝑛𝑎𝑐 :=
⋁︀

{
⋀︀

{ pc ∈ pcs(𝑚𝑏𝑁𝑎𝑐) } | 𝑚𝑏𝑁𝑎𝑐 ∈ BNACMatches };
7 if Φ𝑃 ∧ Φ𝑝𝑐 ∧ ¬Φ𝑛𝑎𝑐 is SAT then
8 foreach c ∈ configs(𝑟) do
9 ŕatRule := 𝑟𝑟.removeAllElements(e | c 2 𝑝𝑐𝑒 );

10 ŕatRule := ŕatRule.removeAllNACs(n | c 2 𝑝𝑐𝑛 );
11 PreMatches := findPreMatches(Model𝑃 , ŕatRule, m);
12 foreach 𝑚𝑝𝑟𝑒 ∈ PreMatches do
13 NACMatches := findNACMatches(Model𝑃 , 𝑚𝑝𝑟𝑒, nacs(𝑟) /

precheckBaseNACs);
14 lift(P, ŕatRule, 𝑚𝑝𝑟𝑒, NACMatches);
15 end

16 end

17 end

18 end

As a performance optimization, we allow certain NACs to be checked early. We consider the
base rule NACs, that is, the set of NACs that are shared by all subrules of the considered VB
rule. In general, not every base rule NAC can be checked early in the way we do it. This is
because the additions that a subrule performs to the base rule might render a NAC fulfilled that
is not fulfilled when considering just the base rule. Elements that matched the NAC’s pattern
for the base rule, match the additions of the subrule and cannot be matched by the NAC’s
pattern anymore. Hence, checking the involved NAC for the base rule only would lead to some
prematches being prematurely discarded.

To determine if a given NAC can indeed be checked early, we define a property called precheck-
NAC and provide a sufficient criterion to check it. The intuition behind precheck-NAC is to
determine those NACs that, when fulfilled in the larger context of an extended rule, are also
fulfilled in the smaller context of the base rule.

First, in line 1, we compute the set of base rule NACs for which a precheck is possible. To
this end, we apply the precheck-NAC criterion to all base rule NACs and collect those that fulfill
the criterion. Afterward, in line 2, 𝑟’s base rule 𝑟0 is matched to the model 𝑀𝑜𝑑𝑒𝑙𝑃 , leading to
a set of prematches for the base rule. If this set is empty, we have reached an exit criterion and
can stop directly, as the following part is skipped. Otherwise, given a match 𝑚𝑏𝑎𝑠𝑒, in line 7, we
check if at least one product 𝑃𝑖 exists onto that m can be rerouted.

To this end, in lines 4–7, we use an SAT solver to check if there is a valid configuration of
P’s feature model for which all presence conditions of matched elements evaluate to true, and at
the same time, no NAC can be matched in all valid configurations of P’s feature model. In line
4, we match all base NACs on the model 𝑀𝑜𝑑𝑒𝑙𝑃 using the match 𝑚𝑏𝑎𝑠𝑒 as the context for each
NAC. For the match of the base rule, we calculate the conjunction of the presence conditions of
the nodes matched by the base rule, giving the condition under which the match is part of the
model. In line 6, we calculate the disjunction over the conditions for being part of the model of
all NAC matches. The condition for a NAC match to be present in a product of the model is
again the disjunction over the matched elements’ presence conditions. The formula considered
in line 7 checks whether a base match 𝑚𝑏𝑎𝑠𝑒 is liftable: this is the case if there exists a product
that includes all matched elements, and there exist no NAC matches extending 𝑚𝑏𝑎𝑠𝑒.

If there is a valid configuration fulfilling the condition, we iterate over the valid configurations
of 𝑟 in line 8 (we may proceed more fine-grained using partial configurations; this optimization
is omitted for simplicity). A flat rule is obtained in lines 9 and 10 by removing all elements and
NACs from the rule whose presence condition evaluates to false. We match this rule to the
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Figure 13.8: Component diagram of the Multi-Variant Henshin implementa-
tion and its integration into GRaViTY.

model in line 11; to save redundant effort, we restrict the search to prematches that extend the
current prematch. The absence of such a prematch is a further exit criterion for the current rule
configuration c. Otherwise, we match for every prematch all NACs of the ŕatRule that have not
been matched yet. Afterward, in line 14, we feed the flat rule, the prematch, and the matches
of the NACs to lifting in line 13. The evaluation of final NAC and dangling conditions is left to
lifting; in the positive case, P is transformed afterward.

For illustration, consider the prematch 𝑚1 = {admitted, diagnostics, treatment} for
the rule foldActions from Figure 13.7. In line 1, we consider the rule’s NACs. Based on the
previous descriptions, we know that NAC3 is a base NAC and fulfills the precheck condition,
and thus, is stored in precheckBaseNACs. Then we calculate Φ𝑝𝑐. As none of the states in-
volved in the prematch has a presence condition, Φ𝑝𝑐 is set to true. Similarly, Φ𝑛𝑎𝑐 is set
to false because the prematch 𝑚1 fulfills the only considered (NAC3 ). Altogether, the con-
straint is satisfiable and the prematch liftable. Therefore we consider the VB rule’s config-
urations. Two valid configurations exist, 𝑐1 = {foldEntry=true,foldExit=false} and 𝑐2 =

{foldEntry= false,foldExit=true}. Considering 𝑐1, the presence condition foldExit evalu-
ates to false; removing the corresponding elements yield a rule isomorphic to Rule A in Fig-
ure 13.6. Now, prematch 𝑚1 is extended using this rule, leading to a prematch as shown in step
3 of Figure 13.7, and then lifted, as discussed in the earlier explanation of the example. Step 3 is
repeated for configuration 𝑐2; yet, as no suitable prematch in 𝑐2 exists, the shown transformation
is the only possibleone.

This algorithm benefits from the correctness results shown in [314]. The effect of the rule
application to the products is the same as if each product had been considered individually. In
terms of performance, two limiting factors are the use of a graph matcher and an SAT solver;
both of them perform an NP-complete task. Still, we expect practical improvements from our
strategy of reusing shared portions of the involved rules and graphs, and from the availability
of efficient SAT solvers that scale up to millions of variables [303]. This hypothesis is studied in
our evaluation in Section 13.4.

13.3 Tool Support for Multi-Variant Model Transformation

We implemented our technique for Henshin [215, 226], a graph-based model transformation
language. Henshin itself is not part of the GRaViTY framework but is insensitively used by the
framework for applying transformation rules.

Figure 13.8 shows a component diagram focusing on the multi-variant extension of Henhsin
and its integration into GRaViTY. The multi-variant transformation algorithm presented in Sec-
tion 13.2.2 is implemented in the component Henshin MultiVar that extends the default Henshin
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Table 13.2: Subject refactoring rule set used in the evaluation of the staged
rule application.

Category #Rules #VBRules

Create/Set 274 171
Delete/Unset 164 121
Change/Move 966 212

Total 1404 504

implementation from the component Henshin. The implementation of the multi-variant trans-
formation is based on a mapping from EMF elements to their presence conditions. To support
arbitrary meta-models, Henshin MultiVar defines an interface IVariability that is used to re-
quest the presence conditions for the model a transformation is applied to. This interface specifies
method signatures for requesting the presence conditions of model elements and updating their
presence conditions as well as loading the used feature model. We implemented this interface as
well for our variability extension to the type graph as for SecPL. When the Refactorings com-
ponent is used to apply a refactoring to an SPL or the SecurityViolationPatterns component
is used to check an SPL for security violations, these can use the standard interface provided by
the Henshin transformation tool.

13.4 Evaluation of the Multi-Variant Model Transformation

To evaluate our technique, we applied our implementation to two transformation scenarios with
product lines and transformation variability. In the first scenario, we applied a large set of
relatively small edit detection rules to UML product lines in the first application scenario. In the
second scenario, we calculated all possible Move Method refactorings on Java software product
lines, including various conditions for their applicability. Our evaluation’s goal was to study
if our technique indeed produces the expected performance benefits in these scenarios. The
implementation of our evaluation and the considered subjects and rules are available in our
GitHub repository1.

13.4.1 Detection of Edit Operations

The first experiment’s goal is to study the performance of the stage rule application on a large
set of relatively small detection rules, of which only a few match on the models.

Setup. The transformation is concerned with the detection of applied editing operations during
model differencing [335]. This setting is particularly interesting for a performance evaluation:
Since differencing is a routine software development task, low latency of the used tools is a
prerequisite for developer effectiveness. The rule set, called UmlRecog, is tailored to the detection
of UML edit operations. Each rule detects a specific edit operation, such as ”move method
to superclass”, based on a pair of model versions and a low-level difference trace. UmlRecog
comprises 1404 rules, which, as shown in Table 13.4, fall into three main categories: Create/Set,
Change/Move, and Delete/Unset. To study the effect of our technique on performance, an
encoding of the rules into VB rules was required. We obtained this encoding using RuleMerger
[329], a tool for generating VB rules from classic ones based on clustering and clone detection
[336]. We obtained 504 VB rules; each of them representing between 1 and 71 classic rules.
UmlRecog is publicly available as part of a benchmark transformation set [309].

We applied this transformation to the 6 UML-based product lines specified in Table 13.3. The
product lines came from diverse sources and include manually designed ones (1–2), and reverse-
engineered ones from open-source projects (3–6). Each product line was available as a UML
model annotated with presence conditions over a feature model. To produce the model version
pairs used by UmlRecog, we automatically simulated development steps by non-deterministically

1GitHub repository containing the implemented tool and evaluation data: https://github.com/SvenPeldszus/
henshin-multivar

https://github.com/SvenPeldszus/henshin-multivar
https://github.com/SvenPeldszus/henshin-multivar
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Table 13.3: Subject product lines of the staged rule application’s evaluation.

SPL #Elements #Products

1: InCar 116 54
2: E2E 130 94
3: JSSE 24,077 64
4: Notepad 252 512
5: Mobile 4,069 3,072
6: Lampiro 29,045 5,892

Table 13.4: Execution times (in Seconds) of the lifting and the staged trans-
formation approach.

Create/Set Delete/Unset Change/Move TOTAL

lift stage factor lift stage factor lift stage factor lift stage factor

InCar 2.83 2.29 1.24 0.94 0.66 1.43 32.35 4.73 6.84 36.12 7.68 4.70
E2E 3.42 2.77 1.24 1.00 0.65 1.54 25.48 4.81 5.30 29.90 8.22 3.64
JSSE 3.92 3.44 1.14 1.07 1.01 1.06 25.71 9.13 2.82 30.70 13.58 2.26
Notepad 2.04 2.04 1.00 0.69 0.75 0.92 23.96 4.34 5.52 26.69 7.14 3.74
Mobile 3.08 2.17 1.42 0.74 1.05 0.71 24.86 4.54 5.47 28.69 7.76 3.70
Lampiro 3.39 2.41 1.41 0.73 0.63 1.15 25.49 7.76 3.28 29.60 10.80 2.74

applying rules from a set of edit rules to the product lines, using the lifting algorithm to account
for presence conditions during the simulated editing step.

As a baseline for comparison, we considered the lifted application of each rule in UmlRecog.
An alternative baseline of applying VB rules to the flattened set of products was not considered:
The SPL variability in our setting is much greater than the rule variability, which implies a high
performance penalty when enumerating products. Since we currently do not support besides
negative application conditions any advanced transformation features, e.g., amalgamation, we
used variants of the flat and the VB rules without these concepts. We used a Ubuntu 20.04
system (Oracle JDK 1.8, Intel Core i5-6200U, 8GB RAM) for all experiments.

Results. Table 13.4 gives an overview of the results of our experiments. The total execution
times for our technique were between 7.14 and 13.58 seconds, compared to 26.69 and 36.12
seconds for lifting, yielding a speedup by factors between 2.26 and 4.7. For both techniques, all
execution times are in the same order of magnitude across product lines. A possible explanation
is that the number of applicable rules was small: if the vast majority of rules can be discarded
early in the matching process, the execution time is constant with the number of rules.

The greatest speedups were observed for the Change/Move category, in which rule variability
was the greatest as well, indicated by the ratio between rules and VB rules in Table 13.2. This
observation is in line with our rationale for reusing shared matches between rules. Regarding the
number of products, a trend regarding better scalability is not apparent, thus demonstrating that
lifting is sufficient for controlling product-line variability. Still, based on the overall results, the
hypothesis that our technique improves performance in situations with significant product-line
and transformation variability can be confirmed.

13.4.2 Move Method Refactorings

Refactorings have been proposed as an efficient measure for optimizing the object-oriented struc-
ture of programs [17]. Practically, as discussed in Chapter 10, refactorings are often performed
in an ad-hoc manner. However, to allow the demonstration of correctness, they can be specified
using graph transformation rules [128, 143, 129]. In contrast to the change detection rules for
UML diagrams, considered for the evaluation of the performance, the refactorings introduced in
Section 10.2, are more complicated.
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Table 13.5: Subject product lines for the application of Move Method refac-
torings and execution times.

SPL Code Metrics SPL Metrics Results Measurements

LLOC #Classes #Methods #Features #Products #Matches #Refactorings Lift Stage Speedup

Notepad 894 41 92 15 512 256 126 0.5s 0.1s 4.68
Mobile 5,919 100 536 13 3,072 305 215 0.3s 0.3s 1.30
JSSE 20,900 220 1,876 6 64 18,628 17,723 6.5s 3.7s 1.75
iTrust 32,553 443 3,106 20 548 26,287 26,164 137.3s 11.2s 12.23
Lampiro 34,550 258 2,037 20 5,892 36,475 33,592 16.2s 10.1s 1.60

Setup. In this experiment, we study the application of a complicated refactorings operation,
including various application conditions. Computationally, the detection of possible refactorings
is the most expensive part of applying a refactoring specified as graph transformation rule. Also,
the matches found for VB rules are always matches for specific rule products. There is no
difference between applying the rule using only lifting or applying a VB rule product. For this
reason, in this experiment, we calculate all possible Move Method refactorings on each subject
system of the experiment. For this purpose, we use a variant of the visibility-preserving Move
Method refactoring introduced in Section 10.2 that is not restricted to only critical members. In
total, the considered Move Method refactoring has 20 variants.

As subject systems, we use the Java-based subjects from the previous evaluation part as well
as an SPL created from the iTrust Electronics Health Records Application, introduced at the
beginning of this chapter. For the iTrust application, various use cases have been defined. Based
on these use cases, we create an SPL by assigning features to use cases and actors related to
the use cases. A summary of the considered subject systems and metrics regarding their size are
shown in Table 13.5 ordered by logical lines of code (LLOC).

Results. Table 13.5 gives an overview of the experiment’s results. For every subject, we show
the median value of 10 runs. On average, the matching is 4.31 times faster using our staged
application than lifting the rule products. The median speedup is 1.75. All in all, there is a high
variance between the different subject’s speedups. Furthermore, as expected, there are matches
of rule products representing the same refactoring, e.g., for the rule product 𝑓𝑖𝑒𝑙𝑑 ∧ 𝑝𝑎𝑟𝑎𝑚 also
the products containing only one of the two features match. For this reason, we show for every
subject both numbers, the number of rule matches, and the number of refactorings resulting
from these matches.

If we investigate the results in more detail, we can identify some factors influencing the
speedup. As Lampiro and iTrust are approximately the same sizes in terms of LLOC and
numbers of features, we inspect them closer. Remarkably, the iTrust feature model has much
more restricting constraints than the Lampiro one, as there are only 548 possible configurations
with the same number of features. However, as both approaches evaluate these constraints in the
same way and there tend to be more evaluations in the staged application (of base-match and
pre-match), this cannot be the reason for the considerable difference in speedup. With 443 classes
and 3106 methods, there are 1.37 million moves to check for iTrust and 523 thousand for Lampiro,
with 258 classes and 2,037 methods. Of these possible moves, 2% are possible refactoring matches
for iTrust and 7% are possible refactoring matches for Lampiro. These refactoring matches are
calculated from 3020 and 1575 base matches. Here, we can see the reason for the considerable
speedup on iTrust. While the number of moves to check nearly triples (2.6x), the number of
matches only slightly increases (1.4x), and the rejections are to a significant amount due to the
base rule.

This evaluation shows that the staged application of VB rules results in a significant speedup
for both many small rules and large, complicated rules on real-world-sized models. Furthermore,
in the refactoring experiment, we have seen that base NACs have a significant influence on the
execution time of VB rules. Finally, the experiment demonstrates the application of GRaViTY’s
security-preserving refactorings to software product lines.



254 Chapter 13. Security Compliance and Restructuring in Variant-rich Software Systems

13.5 Threats to Validity

In this section, we discuss threats to validity. First, we discuss the external threats we identified,
and second, we discuss threats to construct validity.

13.5.1 External Validity

We only considered a limited set of scenarios, based on six product lines and one large-scale
transformation. We aim to apply our technique to a broader class of cases in the future. The
version pairs were obtained in a synthetic process, arguably one that produces pessimistic cases.
Our treatment so far is also limited to a particular transformation paradigm, AGT, and one
variability paradigm, the annotative one. Still, AGT and annotative variability are the under-
lying paradigms of many state-of-the-art tools. Finally, while we now consider advanced AGT
concepts in the form of negative application conditions, there are still other concepts not ad-
dressed by our work. Specifically, we do not address amalgamation, a feature enabling a “for all”
operator in rules [337]. However, studying the interaction between amalgamation and variability
is worthwhile future research.

13.5.2 Construct Validity

While the observed performance improvements make a clear case for the practical usefulness of
our technique, it has some assumptions with implications concerning usefulness. Specifically,
we rely on annotative representations, which might be challenging to work with for developers
due to the use of embedded presence conditions. While there is first empirical evidence suggest-
ing that annotative representations of model-based software product lines do not impair model
comprehension [338], there is currently no user study of the usability of VB rules.

13.6 Conclusion on Multi-Variant Model Transformation

To allow the application of refactorings and security violation patterns to SPLs we introduced a
multi-variant model transformation approach allowing applying variability-based transformation
rules to software product lines. To be more precise, we propose a methodology for software
product line transformations in which not only the input product line but also the transformation
system contains variability. At the heart of our methodology, a staged rule application technique
exploits reuse potential concerning shared portions of the involved products and rules. We present
a formalization of our technique, including an optimization that supports an efficient checking of
negative application conditions, an advanced transformation feature. We demonstrated practical
benefit by applying our technique to two scenarios from a software evolution context. We observed
speedups in all considered cases, in some of them by one order of magnitude. As part of this
evaluation, we have shown how our methodology can be used for refactoring software product
lines using the security-preserving refactorings presented in Chapter 10. The application of
security violation patterns introduced in Section 8.6 to SPLs works analogously.

The proposed multi-variant transformation approach is not only applicable to our two sce-
narios but to every variability-based transformation rule and product line. For example, the
UML product line UMLsec checks, currently expressed by us using OCL constraints, could also
be implemented using this technique.

In the future, further variability dimensions, e.g., meta-model variability as considered in
[339], can be explored to widen the applicability of the proposed approach. Also, the application
of VB rules to product lines using different variability concepts such as feature-oriented program-
ming (FOP) [340, 278] is a worthwhile extension. In feature-oriented model-driven design, the
ideas of FOP have been combined with model-driven design [341]. The open question is how we
can support the models created using this development approach.

While we offer a sufficient criterion for the preponing of NAC checks, further improvements
could be made by strengthening this criterion, ideally by complementing it with a necessary one.
Finding such a criterion presents a potential use case for conflict and dependency analysis [342].
Also, one can study the support of sophisticated graph transformation concepts such as amal-
gamation and path expressions, potentially allowing us to express more sophisticated security
checks on software product lines.



13.6. Conclusion on Multi-Variant Model Transformation 255

Furthermore, there is potential in static rule analysis allowing run-time optimizations of the
rule matching. For example, consider a VB with a rule product that is entirely contained in
another rule product. Comparable to base rules, first matching the contained rule product and
extending the match could be more efficient than calculating entirely new matches for both rule
products. While in this scenario, the one rule is a kind of base rule for the other, there can
also be situations where multiple rule products are similar in more than the base rule of the VB
rule, and it is beneficial to consider a second level base rule. As all these considerations do not
take run-time information into account, statically calculating such situations and building an
application strategy is very promising for optimizing the VB rule application.

To conclude, using the presented approach, we can verify security requirements not only
throughout the life-cycle of a single software product but also at the development of SPLs. Also,
the maintenance of a software system in terms of refactorings is supported in this scenario. This
allows the application of the GRaViTY approach to software product lines.
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Part VI

Tool Support and Application
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Chapter 14

The GRaViTY Framework

Throughout this thesis, we presented prototypical implementations of the discussed approaches.
At implementing the single tool prototypes for evaluation, we frequently reused implementations
of tool prototypes implemented as part of other chapters. Our GitHub repository 1 provides an
integration of all tool prototypes into the overall GRaViTY framework. The implementation of
the GRaViTY framework is licensed under the open-source Eclipse Public License (EPL)2.

In this chapter, we discuss the integration of the presented tool prototypes, resulting in the
holistic GRaViTY framework for supporting the model-driven development and maintenance of
secure software systems. For this purpose, first, we discuss the structuring of GRaViTY into
Eclipse plugins. Afterward, we consider GRaViTY as SPL and discuss its configuration space.
Finally, we discuss the extensibility of the GRaViTY framework and conclude.

14.1 Structuring into Eclipse Plugins

GRaViTY extends the Eclipse IDE with functionalities for the model-driven development of
secure variant-rich software systems. For implementing such extensions, Eclipse supports a
plugin mechanism based on OSGi3. For installation, plugins are bundled into features that are
deployed to Eclipse update sites. For GRaViTY, we deployed 27 plugins in 14 features on our
update site4. Figure 14.1 shows a screenshot of the GRaViTY update site in the Eclipse Install
New Software view. In this view, the features of GRaViTY are shown and can be selected for
installation into Eclipse.

All tool parts presented in the previous chapters are integrated with each other according
to Figure 14.2 building the GRaViTY framework. This figure shows only the components of
GRaViTY but no external dependencies, e.g., dependencies to Henshin, eMoflon, CARiSMA re-
spectively UMLsec, or SecDFDs. Such dependencies are already mentioned in previous chapters,
in corresponding sections describing the tool support in detail. To allow a head-less usage of
GRaViTY, e.g., as part of a continuous integration framework, in almost all tool prototypes,
the UI is separated from the backend. In what follows, we introduce the components shown in
Figure 14.2 in detail.

core-feature: The core-feature bundles basic functionality for interacting with the Eclipse
API and the general logic for managing tasks of GRaViTY. Thereby, the plugin org.gravi-

ty.eclipse.ui contains functionality executed in the UI, e.g., adding a GRaViTY menu to
Eclipse. The org.gravity.eclipse plugin contains interactions with the Eclipse backend.
For example, in this plugin, a resolver between the Java model of Eclipse JDT and the type
graph is implemented. Given an element from one of the two models, the resolver allows
retrieving the corresponding element in the other model.

model-feature: GRaViTY’s type graph itself and the visualization of program models pre-
sented in Section 5.3 are realized by the plugins org.eclipse.typegraph.basic and
org.eclipse.typegraph.basic.ui. Also, the implementation of org.eclipse.type-

graph.basic enriches the type graph with queries such as the search for a type in a program
model by its fully-qualified name. These two plugins are bundled as the model-feature.

1GRaViTY’s GitHub Repository: https://github.com/GRaViTY-Tool/gravity-tool
2Eclipse Public License (EPL). https://www.eclipse.org/legal/epl-2.0/
3OSGi Working Group Website: https://www.osgi.org/
4GRaViTY Update Site: https://www.gravity-tool.org/updatesite/

https://github.com/GRaViTY-Tool/gravity-tool
https://www.eclipse.org/legal/epl-2.0/
https://www.osgi.org/
https://www.gravity-tool.org/updatesite/
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Figure 14.1: Screenshot of GRaViTY’s update site.
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Figure 14.2: Component diagram of GRaViTY’s implementation.
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synchronization-feature: This feature contains shared helper functionalities for the synchro-
nizations supported by GRaViTY. Currently, this is only the org.gravity.modisco plugin,
providing a wrapper and processing support for the concrete implementations of the syn-
chronizations. The three synchronizations supported by GRaViTY are bundled by three
additional features that are shown as sub-components of this feature. The implementation
of these synchronizations has been discussed in detail in Section 6.2.3.

java-pm-feature: The synchronization between Java source code, represented by a MoDis-
co5 model, and GRaViTY’s program model is bundled into the java-pm-feature.
This feature bundles two plugins. First, the org.gravity.tgg.modisco.pm feature
containing the TGG for synchronizing MoDisco models with the program model. Sec-
ond, a user interface for configuring the synchronization, e.g., configuring for how
many projects program models should be cached, is implemented in the org.gravi-

ty.tgg.modisco.ui plugin.

java-uml-feature: This feature contains the synchronization between Java source code
and UML class diagrams, implemented in the org.gravity.tgg.modisco.uml plugin.

pm-uml-feature: The synchronization and correspondence model between program mod-
els and UML class diagrams are contained in this feature. The plugin org.gravity.

tgg.pm.uml implements the functionality to create a correspondence model using the
other two synchronizations.

refactoring-feature: The security-aware refactorings as introduced in Chapter 10 represented
by the refactoring-feature. Again, the UI is separated from the backend implementation
in the plugins bundled by the feature. The plugin org.gravity.refactorings implements
the backend and org.gravity.refactorings.ui the UI.

design-ŕaw-feature: The design-flaw-feature bundles the implementation of the design-
flaw detection tool Hulk [33, 20]. Among others, this feature contains two plugins that are
of primary interest for this thesis. First, the org.gravity.hulk.antipatterngraph plugin
defines an extension to the type graph allowing annotating program models with design-flaw
information. Second, the main logic of Hulk but also various OO metrics, code-smells, and
anti-pattern detections are implemented in the org.gravity.hulk plugin. Both plugins
are used in this thesis for the realization of the security metrics (org.gravity.secu-
rity.metrics).

security-feature: Most security-related implementation parts are bundled into the securi-

ty-feature. The org.gravity.uml.refinements plugin contains the implementation of
the UMLsec extension for tracing between UML models with different abstraction levels,
introduced in detail in Section 6.3.6. The Java security annotations and their counter-
parts in the program model, discussed in detail in Section 6.4.1, are contained in the
org.gravity.security.annotations plugin. From this plugin, we also export a library
only containing the Java annotations. The org.gravity.security.violation.patterns

plugin implements tool support for the security violation patterns, introduced in Sec-
tion 8.6. The security metrics discussed in Section 8.3 are realized as an extension to
the Hulk design-flaw detection tool in the org.gravity.security.metrics plugin.

Security-related implementation parts of GRaViTY focusing on run-time security are bun-
dled into a separate feature deeply coupled with this feature.

umlsecrt-feature: This feature bundles the tool support for the run-time monitor intro-
duced in Chapter 9. The run-time agent (carisma.rt.agenet), discussed in detail
in Section 9.4, is the only component of GRaViTY that is not an Eclipse plugin but
a standalone Java project. The tool support for specifying countermeasures for the
run-time agent and adapting UML models based on observations by the agent is inte-
grated into the Eclipse IDE as plugins again. These features are realized by the plugins
carisma.rt.editor and carisma.rt.adapt, also discussed in detail in Section 9.4.

secdfd-feature: All implementation parts related to SecDFDs [109] are bundled in this feature.
First, these are the semi-automated mappings between DFDs and source code as introduced

5Eclipse MoDisco Project: https://www.eclipse.org/MoDisco/

https://www.eclipse.org/MoDisco/
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in Section 7.2. These are realized in the org.gravity.secdfd.mapping plugin. Second,
the static compliance checks discussed in Sections 8.2, 8.4, and 8.5, are realized in the
org.gravity.secdfd.compliance plugin.

variability-feature: The support for SPLs is bundled in the variability-feature. This
feature bundles the shared parts of the owned more specific variability features. To be more
precise, this is the parsing of Antenna preprocessor statements based on regular expressions
as discussed in Section 11.3 and realized in the org.garvity.eclipse.java.spl plugin.
The two owned features bundle plugins for supporting variability on the program model
and UML model level.

pm-variability-feature: This feature bundles the plugin org.gravity.typegraph.spl,
providing variability support on the program model. This implementation has been
discussed in detail in Section 11.3.

secpl-feature: Plugins providing support for variability on the UML model level are bun-
dled in the secpl-feature. First, this is the plugin carisma.profile.umlsec.vari-

ability allowing to annotate UML models with presence conditions and creating
these annotations from Antenna preprocessor statements as discussed in Section 11.3.
Second, the security checks for UML product lines are implemented in the plugin
carisma.check.variability. Third, the carisma.variability.editor plugin pro-
vides editor support for variability on UML models. The implementation of the last
two plugins has been discussed in detail in Section 12.4.

Figure 14.2 also shows the dependencies between the different plugins. For example, the TGG-
based synchronization between Java source code and the program model, realized in the plugin
org.gravity.tgg.modisco.pm, requires the plugins that define the type graph of the program
model (org.gravity.typegraph.basic), GRaViTY’s MoDisco wrapper (org.gravity.modis-
co), and the org.gravity.eclipse plugin. These dependencies are discussed in detail in the
sections discussing the single parts of GRaViTY’s implementation.

In total, the GRaViTY’s implementation comprises 37k lines of handwritten code. Including
generated code, e.g., from the specification of the TGGs or the metamodels, the whole GRaViTY
tool has 574k lines of code. With up to 574k lines of code, GRaViTY comprises a medium up to
large software project when generated code is considered. Due to this size, there is a consider-
able risk for errors that must be mitigated through appropriate quality assurance. Furthermore,
the GRaViTY framework has been developed and maintained over the past 6 years, building
upon a tool prototype for the transformation tool contest (TTC) 2015 [128, 143]. Frequently,
implemented functionality had to be adapted to be more general, cover new cases or better
fit new contributions to GRaViTY. Among others, GRaViTY has been adapted to new frame-
works multiple times, e.g., new versions of Java, Eclipse, or eMoflon. All of this requires the
implementation of systematic quality assurance. To build the foundation for systematic quality
assurance, we implemented the continuous integration principle. For this purpose, besides the
deployment technology of Eclipse, we use Maven in combination with Eclipse Tycho6 for build-
ing the GRaViTY framework. Eclipse Tycho is a Maven extension providing support to build
Eclipse plugins using Maven. Also, our continuous integration pipeline includes regression tests
and static analysis using SonarQube. In total, we implemented 205 regression tests.

14.2 GRaViTY as Software Product Line

GRaViTY’s implementation as 27 Eclipse plugins allows a flexible deployment tailored to the
needs of a developer that wants to apply the GRaViTY approach. In the end, GRaViTY can
be seen as a software product line that allows developers to use the desired parts of GRaViTY
without overloading the Eclipse IDE with unused functionality.

In the GRaViTY SPL, each plugin is represented by one of the 27 concrete features of
the feature model in Figure 14.3. This feature model also includes constraints expressing the
dependencies between the single plugins. All in all, there are 15.755 possible configurations of
GRaViTY. While in principle, 15.755 configurations are possible, not all of these combinations
are meaningful for an installation in Eclipse. For example, GRaViTY can widely be deployed

6Eclipse Tycho: https://projects.eclipse.org/projects/technology.tycho

https://projects.eclipse.org/projects/technology.tycho
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without a user interface which reduces the dependencies at usage by other plugins but does
not allow the usage by developers. However, considering the integration of GRaViTY into a
third-party application this might be a useful configuration, e.g., as discussed in Section 10.3.1,
GOBLIN uses the refactorings and design-flaw detection of GRaViTY but comes with its own
user interface. Nevertheless, such configurations are unlikely to be useful in an installation over
GRaViTY’s update site for manual use by developers.

To avoid such installations and to reduce the variability to an amount suitable for developers,
the features of GRaViTY aggregate the plugins that are likely to be used together. Figure 14.4
shows an extension of GRaViTY’s feature model with features representing the deployment
information captures in the update site features. The features from Figure 14.3, representing
GRaViTY’s plugins, are shown collapsed. The features on GRaViTY’s update site are assigned
to categories, represented by abstract features in the feature model. The installable update
site features are represented by concrete features in the feature model. These concrete features
are coupled by constraints with the collapsed features representing plugins. For simplicity, these
constraints are not shown in the feature model. For example, the Type_Graph feature contains the
org.gravity.typegraph.basic and org.gravity.typegraph.basic.ui plugins. These two
plugins are represented by the typegraph and typegraph.ui features in the feature model. This
inclusion in the Type_Graph feature can be expressed by an inclusion constraint: Type_Graph

⇒ typegraph ∧ typegraph.ui. In this context, plugins can only be installed as part of an
update site’s features which has to be expressed as two additional implications: typegraph ⇒
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Type_Graph and typegraph.ui ⇒ Type_Graph. Considering these three constraints, there are
two valid configurations. Either all three considered features are selected or none of them. In
the same way, we expressed all relations between the update site features and their contained
plugins. In summary, this leads to a significant reduction of variants. The number of variants is
reduced to 66 variants of GRaViTY that can be installed from the GRaViTY update site.

14.3 Conclusion on the Implementation of GRaViTY

In this chapter, we outlined the technical integration of the single tool prototypes to a modular
overall tool framework called GRaViTY. This tool framework has been implemented as a pro-
totype to demonstrate and evaluate the approaches developed and presented within this thesis.
Altogether, the GRaViTY framework reached a significant size. The modular architecture allows
a deployment suitable to the needs of developers using the GRaViTY approach without overload-
ing their IDE with unused functionality. Also, the modularity supports the reuse of GRaViTY
in future research projects. For example, the GOBLIN tool has shown how single components
of GRaViTY can be reused in other tools. In this regard, throughout this thesis, we discussed
various possible extensions to GRaViTY. Also, the single parts of GRaViTY can be reused as
part of other research approaches.

First, the fine-grained structuring of GRaViTY into plugins allows efficient reuse in other
projects without including too many new dependencies. Due to this structuring, clear interfaces
have been defined for accessing the single plugin’s functionalities. We discussed most of these
interfaces in the implementation sections of this thesis.

On the downside, the integration of GRaViTY into Eclipse might hinder the reuse in contexts
outside of Eclipse. In this regard, the used MoDisco plugin for parsing Java source code has the
tightest coupling with Eclipse as it requires a running Eclipse workspace. While this can be
achieved by deploying GRaViTY together with a headless Eclipse, this is no efficient solution.

Second, it can be beneficial to extend GRaViTY itself, e.g., to provide new analyses. In
this scenario, GRaViTY’s fine-grained structure is beneficial, too. It is most likely, that such an
extension will be implemented as an additional plugin. However, this plugin will not only use
the existing functionalities of GRaViTY but also extend and influence GRaViTY’s functionality.
For example, additional preprocessing or postprocessing steps for GRaViTY’s synchronization
step could be necessary. As discussed in Section 6.2.3, for this purpose, we export interfaces
using Eclipse’s extension points. The feasibility of these exported extension points has been
demonstrated in the Master’s thesis of Mebus that extended GRaViTY’s program model with
data flow and had to register additional processing steps for this purpose [148].

All together, GRaViTY can easily be extended to cover additional functionalities but also
be reused in additional contexts. One major drawback of GRaViTY’s implementation is the
tight coupling with Eclipse. This coupling hinders the reuse of GRaViTY outside the Eclipse
ecosystem. Here, the used MoDisco plugin for parsing Java source code has the tightest coupling
with Eclipse as it requires a running Eclipse workspace. In future versions of GRaViTY, this
coupling should be reduced to allow even better use of GRaViTY also in additional contexts.
Here, we mainly see the integration of GRaViTY into additional IDEs but also continuous
integration frameworks such as Maven or Gradle.
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Chapter 15

Case Studies

In the previous chapters, we applied the locally restricted contributions of this thesis to the
iTrust running example. However, we did not discuss and evaluate the integration of these
single contributions to the overall GRaViTY approach outlined in Chapter 4. In Chapter 14, we
presented the technical integration of the single tool prototypes presented throughout this thesis
into the GRaViTY tool.

In this chapter, we evaluate whether the GRaViTY tool is suitable to support the development
of secure software systems as intended. In this regard, we identified two objectives we focus
on. First, investigate whether the technical integration of GRaViTY allows an application of
the GRaViTY approach throughout software development processes. Second, we focus on the
perspective of developers and security experts working with GRaViTY. Here, we are interested
in the practical usability of GRaViTY when applied to software development. Thereby, we focus
more on usability as part of software development than on detailed usability in terms of software
ergonomics, e.g., regarding the realized user interface. In the end, we investigate if GRaViTY
can be applied to model-driven development, as outlined in Chapter 3, without changing the
performed procedures as a measure for usability.

O1śTechnical Feasibility: Is the integration of the tool prototypes technically feasible to sup-
port the development of secure software systems?

O2śPractical Usability: Can the GRaViTY approach be practically applied to develop secure
software systems without changing MDD procedures?

In the previous chapters, we performed controlled experiments for evaluating the presented
approaches. As both objectives of this chapter target qualitative real-world experiences, case
studies provide suitable means to investigate the objectives [343]. Accordingly, to study the two
objectives, we demonstrate and discuss the application of the overall GRaViTY development
approach to two real-world case studies.

The first case study is iTrust that has already been used as the running example. The
second case study is the Eclipse Secure Storage of the Eclipse IDE. As the developers of iTrust
provide complete documentation and there are models available in existing research [49, 50, 51,
22], we use iTrust to demonstrate the feasibility of the GRaViTY approach for developing a
new software system taking security into account in Section 15.1. While Eclipse also provides
good documentation of the implementation, there are no requirements or models available. For
this reason, in Section 15.2, we apply the GRaViTY approach to Eclipse Secure Storage to
demonstrate the feasibility of using GRaViTY on legacy projects.

The description of both case studies is structured into multiple development steps. For each
step, first, we generally introduce the step. Then we describe the execution of the development
step by applying GRaViTY, and afterward, we present a discussion of our observations in this
step. After all steps of a case study, we generally discuss our observations in this case study.

15.1 Case Study 1: iTrust

As introduced in Section 2.2, iTrust comprises an Electronic Health Records system developed as
a class project over 25 semesters [50, 46]. The main documentation is provided as requirements
describing use cases of the iTrust system. The software system itself has been implemented
in Java using Java Server Pages (JSP). Also, design-time models have been created as part of
various research [344, 53].
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Figure 15.1: Use case diagram refining iTrust’s domain model.

15.1.1 Description of the Case Study Execution

In this case study, we simulate the implementation of the iTrust system using GRaViTY from
the very beginning, starting with requirements engineering. After the initial development of the
software system, we focus on the restructuring of iTrust as part of the maintenance. Finally, we
showcase the conversion of iTrust into an SPL. In all steps, we reuse the existing iTrust artifacts
and create all required artifacts following the GRaViTY development approach.

Requirements Engineering

As discussed in Section 3.3.1, usually the development of a software system starts with an analysis
of the domain as part of the requirements engineering. The knowledge about entities and relations
within the software system’s domain is captured in a domain model. The domain model elements
are then used to specify their realization in the software system. Here, the specification of the
software system’s intended functionality is one of the first steps of requirements engineering. For
this purpose, the UML provides the notation of use case diagrams. A detailed use case diagram
for iTrust has been discussed in Section 2.2. In this section, we focus on the relation of this use
case diagram with the domain model.

Execution. To simulate the requirements engineering, we manually recreated iTrust’s use case
diagram based on iTrust’s requirements. Thereby, we took a domain model as given and refined
it by specifying the use case diagram. Whenever there was a refinement relation between the
use case diagram and the domain model, we explicitly modeled this relation. Figure 15.1 shows
some of these refinement relations between entities from the domain model and the use case
diagram elements. On the left side of the figure, the domain model introduced in Section 3.3.1 is
shown. The domain model shows basic concepts in a hospital such as doctors treating patients.
On the right side of the figure, an excerpt of the use cases of iTrust is shown focusing on the
basic treatment of patients by doctors. As use case diagrams do not specify data or structures of
the software system but basic tasks performed in a software system, only domain model entities
corresponding to actors in the use case diagram are refined. In the concrete diagram, two kinds
of doctors (LHCP and HCP) are defined that perform treatment-related tasks such as documenting
office visits (UC11). In the next step, the domain model and use case diagrams are refined further
to specify an architecture that allows the implementation of the specified use cases.

Discussion. Considering the models used in this part of the case study, refinement relations
are suitable to model explicitly specify the relations and come only with a low overhead for the
considered models. Accordingly, we can assume both, the technical feasibility (O1) and the
practical usability (O2) as given.
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Software Architecture and Security Modeling

After requirements engineering, based on the requirements models and the textual requirements,
the software system’s architecture is specified. Following the principle of security by design, we
have to consider security requirements explicitly in this step. Accordingly, in this section, we
discuss the simulation of the architecture specification for the iTrust system. The model-driven
development of iTrust’s software architecture has been discussed in detail in Section 3.3. In
this part of the case study, we focus on the feasibility of refinements for specifying software
architecture and security engineering.

Execution. In what follows, we do not focus on the architecture itself but a simulated incre-
mental growth of the architecture until the state described in Section 3.3 is reached. Thereby,
we consider interleaving steps of extending the architecture and security engineering.

Starting from the models developed at requirements engineering, we iteratively refine these
models until we reach a detailed specification of the iTrust system. After every extension step,
comprising the addition of a coherent set of model elements, a security engineering step takes
place. Here, we considered the security engineering using UMLsec and SecDFDs as presented in
Section 3.6. As the SecDFD and UMLsec specifications and checks are known from the literature,
we do not focus on their usage but the Secure Realization security-refinement mechanism intro-
duced in Section 6.3.5. As part of our case study, we simulated these steps by selecting parts
of the design and implementation models introduced in Section 3.3 and iteratively rebuilding
the models. Whenever we added a new part to the models, we also created the corresponding
refinement relations as discussed in Section 6.3.

We started our simulation with a domain model already containing fundamental security
requirements, such as that personal data has to be classified at the security level of secrecy as
introduced in Section 3.6.1. Based on this model, we simulated three evolution steps:

1. In the first step, we defined classes in the design model refining persons and actors of the
domain model and use case diagram.

2. Afterward, we added the data classes for storing medical information about patients.

3. Finally, we added classes and operations for implementing the functionality of the use cases.

Discussion. As we only used technology provided by standard UML and no extensions of
GRaViTY, these non-security-related refinements have been labor some but straightforward.
Also, the specification of Secure Realization was straightforward but often triggered security-
related follow-up tasks.

After every extension step, we have been provided with a list of missing security realizations
for fulfilling the Secure Realization security requirement. As we did not specify security require-
ments as part of extending the design model but considered their specification as a separate task
performed after the extension, these security violations are expected. Practically, these lists of
security violations served as todo-lists for the abstract domain model level security requirements
to consider in the design model.

The same applies to the security violations detected by default UMLsec checks, such as
secure dependency, executed each time after specifying new security refinements. At the explicit
specification of realizations, additional security requirements necessary due to dependency were
obviously and added by us. However, there have cases we did not immediately recognize. These
cases have been reported to us by CARiSMA at checking secure dependency. Here, as intended
by the check, we have been thinking about whether a security level should be extended to a new
class or if we should overthink the dependency. However, as the given design of iTrust is required
for the subsequent steps of the case study, we fixed all reported security issues by adding the
required UMLsec stereotypes.

Nevertheless, this demonstrates not only the technical feasibility (O1) of the GRaViTY
approach but also the effectiveness of UMLsec and Secure Realization in detecting potential
security issues and positively influencing the security design of a software system. Also, from our
perspective, GRaViTY’s security reporting naturally integrated into the development process.
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Implementation

After reaching a state in which the design-time models are detailed enough, we have to start
implementing the software system. Thereby, tracing is required from the first written line of code
for applying the GRaViTY approach. For this reason, we focus on the integration of GRaViTY’s
tracing approach into software development.

Execution. Using the synchronization mechanism of GRaViTY, we generated an early class
layout from the implementation model. Afterward, we filled this layout manually with function-
ality. During this step, the implementation model has been kept synchronized by GRaViTY
with the manual changes. We performed this manual extension by copying and pasting imple-
mentation fragments of the iTrust implementation into the generated class layout. However, as
the MoDisco parser is not incremental, in addition, we had to simulate these changes on the
MoDisco model by manually copying the corresponding changes into this model. After every set
of source code changes, we generated a MoDisco model and copied the changes into the MoDisco
model used by GRaViTY, making the changes processable for the used TGG.

Discussion. In this case study, we have been able to successfully generate an initial code
skeleton that is connected with the design-time models through GRaViTY’s correspondence
model. From a user perspective, there was no difference compared to code generation using
other modeling tools such as Enterprise Architect1 or Astah2.

Furthermore, we have been able to continuously synchronize the growing source code with the
design-time models. However, while in a final product this should be performed automatically at
suitable points of time, e.g., whenever a build is triggered in the IDE or a change is committed to
a repository, this synchronization had to be simulated in this case study. As already mentioned,
the reason for this was the non-incremental implementation of the MoDisco parser that did not
allow feeding changes directly into the TGGs for synchronization. Nevertheless, we demonstrated
the principle feasibility of continuous synchronization from a technical point of view (O1). The
practical feasibility from a viewpoint of a developer (O2) seems reasonable but suitable execution
points have to be identified in future works.

Security Compliance

The continuous verification of the planned and implemented security is an essential contribution
of GRaViTY. As part of this case study, we investigate how these verification steps integrate
into the software development process.

Execution. Comparable to the incremental specification of the software system’s architecture,
we also interleaved security verification steps with the implementation steps. These implemen-
tation steps have been discussed as the subject of the previous part of this case study. After
synchronizing every change made on the implementation with the design models, we manually
executed all security compliance checks.

Discussion. As in the generated class design and the first pasted code fragments no security
mechanisms have been contained, all have been reported as absent. For this reason, initially,
we faced a long list of absences regarding the planned security design. However, as we incre-
mentally added more functionality from iTrust’s implementation, the size of the lists of absences
reduced until we got rid of all absences. Thereby, the absences functioned as a kind of todo-lists
for security-related tasks and as selection criteria for the next code fragments to paste. As the
inserted source code was security compliant, no other violations have been reported. The violat-
ing case has been considered in the evaluations of the static security compliance approaches in
Chapter 8. Nevertheless, this demonstrated the technical feasibility (O1) of GRaViTY’s security
compliance checks. From the perspective of usability (O1), using GRaViTY’s security compli-
ance checks is comparable to other static analyses, e.g., PMD3 or Checkstyle4. However, the

1Enterprise Architect: https://www.sparxsystems.com/products/ea/index.html
2Astah: https://astah.net/
3Website of the PMD analyzer: https://pmd.github.io/
4Website of Checkstyle: https://checkstyle.org/

https://www.sparxsystems.com/products/ea/index.html
https://astah.net/
https://pmd.github.io/
https://checkstyle.org/
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automated execution after changes, which static analysis tools often offer, should also be added
to GRaViTY for increasing its usability.

Restructuring

After reaching the state in which our case study system’s implementation was identical to the
original iTrust implementation, we investigated this implementation regarding possibilities for
restructuring the software system. Thereby, we only focused on restructuring in terms of refac-
torings. Concrete possibilities for refactoring iTrust have been discussed in Chapter 10.

Execution. To find´ additional refactoring opportunities, we executed the search-based opti-
mization tool GOBLIN [144], discussed in Section 10.3.1, on iTrust. Thereby, we added all three
refactorings introduced in Section 10.2 (Create Superclass, Pull-Up Method, and Move Method) to
GOBLIN. Besides, the optimization criteria considered in the summarized experiment of Ruland
et al. (design-flaws, coupling/cohesion, visibilities, and the number of changes), we also added
the Critical Design Proportion metric discussed in Section 8.3 as an optimization criterion.

Discussion. Due to iTrust’s architecture along with the Java server pages, most times the im-
plemented functionality was already well-located, and we only rarely found additional beneficial
refactoring opportunities. Applying the refactorings we found, did not differ much from apply-
ing the refactorings integrated into the Eclipse IDE. For this reason, we consider the technical
feasibility (O1) and the usability (O2) as given.

Variability Engineering

As the last part of this case study, we considered the re-engineering of iTrust into an SPL. In
this case study, we mainly focus on the specification of an SPL in terms of the variability within
all artifacts of the software system. However, we also consider the security checks for SPLs.

Execution. As described in Section 11.1, we started on the use case diagrams with the iden-
tification of possible features. Finally, we ended in assigning individual use cases to features.
Afterward, we investigated two different approaches for realizing the identified features in the
software system. First, a top-down approach by specifying variability on the models and prop-
agating it to code, and second, a bottom-up approach in which we specified variability on the
source code and propagated it into the design-time models. After realizing the variability in the
iTrust system, we executed the SecPL checks to verify the security of the iTrust SPL.

Discussion. While annotating the use case diagrams with presence conditions was straightfor-
ward, issues emerged within this model-based re-engineering method. Mainly, the design-time
models considered by us rarely contained detailed behavior specifications allowing us to judge
the side effects of presence conditions. For the re-engineering, it turned out to be more efficient
in adding Antenna preprocessor statements into the implementation using FeatureIDE. Here,
we have been able to adjust the presence conditions until we achieved compiling source code.
Afterward, we propagated these presence conditions into the UML models using GRaViTY’s tool
support introduced in Section 11.3.

As our restructuring of iTrust into an SPL ended in the state described in Chapter 11, we
expected no security violations regarding the SecPL checks when executing these on the entirely
restructured SPL. This expectation was fulfilled in this case study. The GRaViTY approach is
technically feasible (O1) to specify variability on UML models and the Implementation as well
as to propagate the Antenna annotations into the design-time models. Regarding usability (O2),
additional support is needed for the re-engineering of a software system into an SPL on the model
level. In contrast to this, the bottom-up re-engineering was very usable. To this end, it seems
likely that the forward engineering of an SPL from the beginning comes with good usability as
fewer implementation level dependencies have to be considered at specifying variability. However,
this should be studied in more detail in future works.
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15.1.2 Discussion of the Observations

In this case study, we have shown that the integration of the single approaches works for the
considered case study. Only triggering the propagation of implementation-level changes had to
be simulated by providing changes on the MoDisco model level. This limitation can be overcome
by incremental parsers [345] such as Tree-Sitter5. Altogether, we consider the technical feasibility
of the GRaViTY for supporting the development of secure software systems (O1) as given for
the considered waterfall-like case.

Considering the usability and the integration into the development process (O2), we never
had the impression that we were using the tool only for the purpose of using the tool. There
was always a benefit in using the tool and it only rarely impacted the development process.
However, more seamless integration and more automation in the execution of the tool would
be beneficial and interrupt the development process less. Especially in the context of security
checks, huge lists are presented when a developer decides to execute the security checks. Instead
of executing all security checks on the whole software system after finishing a coherent set of
changes, these checks should be extended to support near real-time notifications when modeling
or implementing a specific part of the software system. Also, only information relevant to the
part of the software system a developer is currently working on should be shown.

15.2 Case Study 2: Eclipse Secure Storage

Our second case study focuses on applying GRaViTY to a security-critical part of the Eclipse
IDE. Eclipse Secure Storage [201] is used by Eclipse plugins such as the Eclipse git client to store
confidential data like passwords. The Eclipse Secure Storage is implemented as an Eclipse plugin
itself using Java. How exactly the secure storage works is described in the help document of
Eclipse [201]. However, this description is rather high-level and complemented by the low-level
API documentation. We consider Eclipse Secure Storage due to its security-criticality, good
documentation, and wide usage in practice.

15.2.1 Discussion of the Case Study Execution

In this case study, we focus on migrating legacy projects to GRaViTY. In what follows, we
first discuss the reverse engineering of the Eclipse Secure Storage to create a state in which the
application of the GRaViTY approach is possible. Next, we discuss security engineering, aiming
at making security requirements explicit and checking the software system regarding compliance
with them. Finally, we discuss the run-time monitoring of the Eclipse Secure Storage based on
a fictive malicious Eclipse plugin and the adaption of the reverse-engineered models.

Reverse Engineering of Models

The first essential step for applying GRaViTY to legacy projects is to reconstruct trace links
between design-time models and the implementation. If no design-time models are available,
models suitable for developers or security experts to work with must be reverse-engineered. This
reverse engineering can be performed both manually or by automated tool support.

Execution. As there are no models available for Eclipse Secure Storage, the first step of this
case study was the reverse engineering of models. For the reverse engineering of models, we
followed a three-step approach. First, we manually created data flow diagrams and UML activity
diagrams based on the documentation of Eclipse Secure Storage. Afterward, we automatically
reverse-engineered a detailed UML class diagram from the source code of Eclipse Secure Storage
using GRaViTY. Finally, we used the semi-automated mapping approach to establish refinements
between the manually created diagrams, the automatically reverse-engineered class diagram, and
the software system’s implementation.

Data Flow Diagrams and Activity Diagrams: To get a better understanding of Eclipse Se-
cure Storage, in a first step we manually reverse engineered Data Flow Diagrams showing
essential processes of Eclipse Secure Storage. As discussed in Section 3.6.2, UML activity

5Tree-Sitter: https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/
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Figure 15.2: DFD for reading a secret from the Eclipse Secure Storage.

diagrams can be specified analogously. After specifying the first DFD, we applied the semi-
automated mapping approach introduced in Chapter 7 for creating a correspondence model
between design-time models and source code as well as the structural compliance checks
discussed in Section 8.2. Based on these compliance checks, we have been able to adapt our
DFD to reflect the implementation better. Whenever we detected a structural divergence,
we investigated this divergence and adapted the DFD. Also, the semi-automated mapping
proposed classes we did not consider to be involved in the scenario but are involved in the
scenario and have been accepted by us as correct suggestions. In summary, the reverse
engineering approaches and compliance checking made it easier to get a detailed under-
standing of Eclipse Secure Storage in detail by putting our focus on detected divergences
or unexpected correspondences.

Figure 15.2 depicts the final DFD of the Eclipse Secure Storage. An arbitrary plugin
attempts to access a secret by sending a request including path information of where to
look for the secret, e.g., a password request for a user name of a Git account. The secure
storage queries an internal tree-like data structure to find the corresponding node containing
the requested secret. Next, the cache is queried for the secret value, which can be in clear
text, i.e., secret on flow 6 in Figure 15.2, or encrypted, i.e., encr. data. on flow 7. If the
value is in clear text, the secret is sent to the plugin. In the case of an encrypted value, a
decrypt operation either fetches the root password from the operating system or prompts
the user to provide it. Upon successful decryption, the secret is sent to the requesting
plugin in flow 10 of Figure 15.4.

Implementation-level Class Diagram: In Figure 15.3, we present an excerpt from the reverse-
engineered UML model of Eclipse Secure Storage. For showing the internal working of
Eclipse Secure Storage, we included classes from Eclipse’s Git implementation to represent
a concrete plugin accessing the Eclipse Secure Storage. The class SecurePreferences, at the
bottom left of Figure 15.3, represents mappings between secrets and keys to access them
internally. The field name holds the name of the context under which a secret is stored. If
a secret is requested using the get method of this class, the secret is loaded from the key
store and the user may have to provide her master password to unlock the keyring. The
interface ISecurePreferences specifies public methods over which secret data of different
plugins can be accessed. Stored secrets can be requested using the method get and written
using put. This interface is implemented by the class SecurePreferencesWrapper that wraps
the internal instances of the class SecurePreferences using container objects.

The two classes of the Eclipse Git implementation responsible for storing passwords are
shown at the top of the figure (Activator and EGitSecureStore). These are initialized by
Activator at the startup of the application. For this initialization, the SecurePreferences-
Factory of the Eclipse Secure Storage is used to get the default password store and initialize
the class EGitSecureStore. Then, this class provides a mapping between Git repositories
and associated user names and passwords using the ISecurePreferences interface.

Creation of Refinements: To allow the security tracing between the SecDFDs and the UML
class diagrams, we replaced every SecDFD with a UML activity diagram as shown in
Section 3.6.2. When in the correspondence model between the DFDs and the source code,
a DFD element had a correspondence with a source code element that corresponds to an
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Figure 15.3: Eclipse Secure Storage annotated with UMLsec Secure Depen-
dency stereotypes.

element from the UML class diagram, we created a refinement reference from the class
diagram element to the activity diagram element corresponding with the DFD element.

Discussion. In this case study, we noticed that the semi-automated mapping approach pro-
posed within this thesis is not only suitable for restoring a correspondence model between DFDs
and source code but assists in defining a DFD for a given implementation of a software system.
As we did not transfer the semi-automated mappings to UML activity diagrams, we had to
manually perform this transition by first reverse engineering DFDs and corresponding activity
diagrams, mapping the DFDs to the implementation, and then transferring the mappings from
the DFD to the UML activity diagram. However, as this process is straightforward, there seems
to be no reason to object to the technical realizability of this task. Accordingly, we consider
the technical suitability of the reverse-engineering (O1) as given. Regarding the usability and
benefits for the developers (O2), the application of our approach gave us more detailed insights
into the implementation than only studying the implementation and its documentation.

Static Security Specification and Checks

One of the two main goals of applying GRaViTY to legacy projects is to create artifacts that
allow an easier specification of security requirements, comparing to their specification on the
implementation, and the security compliance checks with these security requirements. The other
main goal is to continue with the continuous verification of the software system’s security after
the initial state has been proven to be secure. In this part of the case study, we focus on creating
such an initial secure state using GRaViTY.

Execution. After the reverse engineering of design-time models, we started annotating these
with security requirements. Here, we started with essential security requirements on the SecDFDs
and more detailed security requirements on the class diagram, afterward.

SecDFD: Figure 15.4 shows an excerpt (for clarity) of the SecDFD for the Eclipse Secure Stor-
age example discussed before. If a plugin requires secret data that is cached encrypted,
the user must enter a password when prompted, c.f. pass. ext. in Figure 15.4. The
externally provided password is then used to decrypt the cached secret data, and if this
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Figure 15.4: SecDFD for reading a aecret from the Eclipse Secure Storage.

was successful, the plugin is allowed to read it. First, the designer must specify that the ex-
ternal password is confidential. Second, the designer needs to specify the process contract,
e.g., a decrypt contract (DECR) for the process Decrypt_data. Since the external password
is confidential, it should not be leaked to other plugins running in the environment. These
simple extensions allow us to identify such behavior in the model. For instance, the ex-
tended notation [109] is shipped with a simple label propagation (using a dept-first search)
according to the specified process contracts. Once the labels have been propagated, a static
check is executed to determine if any confidential information flows to an attacker zone.
In Figure 15.4, the Plugin is not a malicious entity, i.e., it is not part of an attacker zone.
The developer can manipulate the elements of attacker zones to change the design model
and improve security.

UMLsec: As part of the design phase, we extended the reverse-engineered UML model (Fig-
ure 15.3) with annotations according to UMLsec Secure Dependency. For example, as
Eclipse Secure Storage intends to provide secure storage of secrets, all objects represent-
ing secrets and methods for accessing secrets should be put on the secrecy security level.
Accordingly, the class SecurePreferences is annotated «critical» and the secrecy list
holds the signature get(String, String,SecurePreferencesContainer):String (visu-
alized in the comment linked to the class), all classes with a dependency to this class that
is stereotyped with «call» have to respect this secrecy security level. This is represented
by a «secrecy» stereotype on the dependency and «critical» containing this signature,
as on the class SecurePreferencesWrapper.

1 @Critical(secrecy ={"get(String ,String ,SecurePreferencesContainer):

String"})

2 public class SecurePreferencesWrapper implements

ISecurePreferences {

3 private SecurePreferences node;

4

5 @Secrecy

6 public String get(String key , String def) {

7 return node.get(key , def , container);

8 }

9 }

Listing 15.1: Source code of the password store with security annotations.

Listing 15.1 shows the Java security annotations that have been automatically propa-
gated to the Java source code from the SecurePreferencesWrapper shown in Figure 15.3.
The value secrecy={get(String, String):String} of «critical» is represented by a
@Secrecy annotation on the get method in line 5 of the example. Additionally, the security
requirement secrecy is specified for a member with the signature get(String,String,Se-
curePreferencesContainer):String in the @Critical annotation in line 1. This method
is called in line 7 of the source code fragment.

Discussion. Annotating the reverse engineered-models with security requirements was straight-
forward. Unlike the iTrust case study, there is only one level of inheritance simplifying this step.
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Technically, we demonstrated the feasibility of the tools for annotating the models and especially
of GRaViTY’s synchronization mechanism for propagating the security requirements into the
implementation. Accordingly, the technical feasibility (O1) is given. From a developer’s per-
spective, the main struggles in annotating the models lie in the used UML editors. The handling
of the relatively large UML class diagram is not as fluently as the navigation through the Java
source files. However, once a suitable view had been created, for us, this graphical representation
was easier to follow than the source code files. To conclude, regarding O2 the approach is usable
in principle but there could be improvements. First, by better editor support and second by an
automated creation of views on UML models.

Run-Time Monitoring

In the last part of this case study, we focus on leveraging the specified security requirements to
enforce these at run-time using UMLsecRT. In the implementation of a software system specified
by a UML model, the dependencies stereotyped with «call» are usually implemented as method
calls and field accesses. Even if a model does not contain violations, at run-time it has to be
guaranteed that the security requirements specified at design time are not violated. Furthermore,
detecting all dependencies which can occur at run-time is statically undecidable, e.g., due to
the use of Java reflection [238, 120]. What can also not be foreseen from a static perspective
are violations caused by an exchanged library or malicious code. In Eclipse, for example, every
installed plugin can access the password store. Which plugins a developer installs into her Eclipse
IDE is not predictable. However, considering the discussed security annotations, only plugins
that comply with the secrecy security level should be allowed to access the password store.

Execution. To execute this part of the case study, we implemented a malicious plugin trying
to illegally access passwords stored in the Eclipse Secure Storage. Moreover, we extended the
Eclipse Secure Storage implementation with countermeasures for actively preventing such illegal
accesses. After these two extensions, we monitored Eclipse with the UMLsecRT agent and exe-
cuted the malicious plugin. In what follows, we first introduce the malicious plugin. Afterward,
we exemplary introduce one of the defined countermeasures. Finally, we discuss the execution of
the UMLsecRT agent and the adaptions performed by the agent.

Example Security Violation: In Listing 15.2, we show how a malicious plugin can exploit the
secure storage API to read the stored passwords. To avoid detection by static analyses, it
uses the Java-Reflection API for accessing the get method of the class ISecurePreferences.
To achieve this, in line 2 the malware navigates to the ISecurePreferences instance holding
the desired passwords and then accesses them in lines 3 to 5. First, a Method object is
requested, set to accessible, and finally the value of this method is requested and passed to
a method sendPassword.

1 public String readPassword(ISecurePreferences s) {

2 ISecurePreferences git = s.node("git/gitlab");

3 Method m = git.getClass ().getMethod("get", ...);

4 m.setAccessible(true);

5 return (String) m.invoke(git);

6 }

Listing 15.2: Source code of a malicious Eclipse plugin.

Counter measures: Listing 15.3 exemplifies the usage of calling an additional method to de-
termine an early return value: secure():String will be called if a security violation of the
secrecy property of the method get occurs at run-time. This method generates a random
password that is returned instead of the real one.

Monitoring and adaption: Figure 15.5 shows a deployment diagram of the Eclipse Secure
Storage we reverse engineered before the execution of the security monitoring. The shapes
with white background resemble the elements coming from the (reverse-engineered) model.
On top is the call between the class EGitSecureStore and the interface ISecurePref-

erences from Figure 15.3. Below those two types, we can see on which artifacts those are
deployed and on which execution environment they are manifested. The shapes with a gray
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1 public class SecurePreferencesWrapper implements ISecurePreferences {

2 @Secrecy(earlyReturn = "secure")

3 public String get(String key , String def) {

4 return node.get(key , def , container);

5 }

6

7 @CounterMeasure

8 public String secure () {

9 StringBuilder s = new StringBuilder ();

10 Random random = new SecureRandom ();

11 for(int i = 0; i < 10 + random.nextInt (10); i++) {

12 s.append ((char) random.nextInt(’z’ - ’a’) + ’a’);

13 }

14 return s.toString ();

15 }

16 }

Listing 15.3: Specification of a countermeasure.
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Figure 15.5: Deployment and manifestation of classes with adaptions.

background on the right were automatically added as an evolution step by a UMLsecRT
guarded execution. These show actions of the malware introduced in Listing 9.4 that have
not been considered by the system’s developers.

Figure 15.6 is a sequence diagram generated by UMLsecRT during monitoring execution
of the Eclipse IDE including the Eclipse Secure Storage and the malicious plugin (see
Listing 15.2). It outlines a call sequence leading to a security violation and the mitigation
carried out against it. The source of the security violation is the call of the method
get(String,String):String, commented with Violation of Secrecy in the diagram, that
has been called by the method readPassword. While this call is obfuscated by the use
of Java reflection in the implementation, we can show the effective calls in the generated
sequence diagrams. Which countermeasure has been executed is also shown in a comment.
In this case, the method secure() has been called as specified in Listing 15.3. After the
violating call, the attacker called sendPassword(String) but due to the countermeasure
not with the secret value. As discussed in Chapter 9, due to efficiency reasons, only
beginning with a security violation all future accesses are recorded and will be visualized.
In this case, this is just one additional call of sendPassword.

Discussion. As showcased, we successfully applied the run-time monitoring for detecting and
mitigating the security violation based on the security requirements specified on the reverse-
engineered models. Also, the models have been adapted to investigate the security violation in
detail. As shown in Figures 15.5 and 15.6, detailed models have been generated allowing us to get
a deeper understanding. However, as we might be biased, this part of the case study should be
repeated with independent developers and security experts. Nevertheless, the technical feasibility
(O1) has been demonstrated in the context of a legacy project, and from our side, there are also
strong indications for good usability for developers and security experts (O2).
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Figure 15.6: Sequence diagram automatically generated by UMLsecRT.

15.2.2 Discussion of the Observations

Similar to the first case study, we have been able to use GRaViTY throughout the whole consid-
ered scenario. However, there are two limitations. First, the propagation of security requirements
from the SecDFDs into the class diagrams and the implementation required manual workarounds.
However, overcoming this limitation by additional tool support seems reasonable. Second, we
did not consider continuous security checks at maintenance and extension of Eclipse Secure Stor-
age. Nevertheless, as we reached a state comparable to an intermediate state of the iTrust case
study, synchronizing future changes is theocratically possible. That we have been able to use the
created correspondence model to propagate security requirements from the design-time models
into the implementation is also an indication in this regard. Accordingly, we can assume the
technical feasibility of GRaViTY (O1) for the application on legacy projects to be given. Re-
garding the usability from the perspective of developers and security experts, we had the goal of
verifying the security of Eclipse Secure Storage statically and at run-time. Considering this goal,
all actions have been straightforward. Especially, we did not have to care about the synchroniza-
tion between the reverse-engineered models and the implementation as intended by GRaViTY.
However, annotating the UML models using Papyrus has been somewhat cumbersome and could
be improved. Nevertheless, as software ergonomics are not the focus of O2 and GRaViTY did
not extend Papyrus to the UMLsec stereotypes, we assume good usability.

15.3 Threats to Validity

The validity of the two case studies discussed in this chapter is subject to multiple threats. In
this section, we discuss possible threats to validity and our mitigation for lowering the impact of
the identified threats.

The main treat identified by us is that the case studies have mainly been performed by
the author of this thesis. This might give rise to a threat to internal validity as the author
could be biased. To clearly outline this threat, we described the case studies and the performed
development activities and our conclusions in detail. Additional case studies with independent
developers and security experts should be performed in future works.

The generalization of our observations and conclusions might be limited as we only considered
two subject systems. To lower this threat, we selected the subject systems from two different
domains, namely healthcare and storage of secrets. Also, both subject systems have been selected
to use as different technologies as possible. The iTrust system is a web application based on JSP
while Eclipse Secure Storage is based on Eclipse plugins.

In every case study, we simulated one development scenario. Here, we have not been able
to cover every possible scenario. For example, we have no scenario explicitly focusing on the
application of GRaViTY in agile software development. Nevertheless, the two considered sce-
narios are fundamentally different allowing us to increase our coverage as far as possible within
the available resources. Also, we descriptively outlined the principle suitability of GRaViTY to
cover additional development scenarios. Nevertheless, additional development scenarios should
be considered in the future.
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15.4 Conclusion on the Case Studies

We successfully applied GRaViTY as part of the two case studies considered in this chapter.
Thereby, we demonstrated the technical suitability of the developed approach (O1) for developing
secure software systems. As some parts of the case studies required manual simulations of parts
of the approach, additional tool support can make the development more effective. Nevertheless,
our case studies revealed that the current implementation of the GRaViTY approach already
provides much support for effectively and efficiently aiding the development of secure software
systems. Altogether, the case studies demonstrated the technical feasibility (O1) of GRaViTY.

Considering the key assumptions on users of the GRaViTY approach introduced in Sec-
tion 4.1, we can also assume good usability from the perspective of developers and security
experts (O2). In what follows, we discuss our observations regarding the four key assumptions.

Suitable Views: As part of the case studies, we specified security requirements mainly on
design models. While it was necessary to specify some security requirements on a very
detailed version of these models, often it was possible to specify security requirements on
abstract models and to propagate these into more detailed models and the implementation.

Side effects: While performing the case studies, we never had to care about the side effects
of our actions. However, there still have been some situations in which we had to resolve
conflicts caused by side effects. But these have always been presented to us prominently
by the tool support, e.g., by an additional dependency causing security issues revealed by
the continuous security checks.

Synchronization: In the case study, we have always been able to synchronize our changes
without facing issues. As our case studies only partly contained the situation in which
larger changes on the UML models had to be propagated into the implementation there
might be cases in which issues with the synchronization can arise. However, such cases
have explicitly been discussed in Section 6.2.

Continious Security: Throughout the whole case study, the primary goal of continuous secu-
rity compliance checks has been reached. After specifying the first security requirements
we have always been able to check the software system for security violations.

While the principle usability has been demonstrated, the case studies also revealed space
for future improvements. The software ergonomics not explicitly considered in the case studies
should yield more attention in future works. Also, additional automatization should be considered
in the future. This mainly targets the automated execution of synchronization steps and security
verifications. Regarding security verifications, more incremental execution of the checks should
be considered to allow near real-time feedback and focusing only on parts currently in the scope
of a developer. Last but not least, reverse engineering of more abstract models and automated
extraction of views should also be targeted.
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Chapter 16

Related Work

In this chapter, we discuss works related to the GRaViTY approach introduced in this thesis.
To the latest of our knowledge, GRaViTY is one of the first approaches allowing continuous and
integrated model-based security engineering covering the whole software development life cycle.
Therefore, most related works target single parts of GRaViTY. Accordingly, we structured this
chapter along with the main areas considered in GRaViTY. First, in Section 16.1, we discuss
related works regarding tracing and synchronization of changes. In Section 16.2, we discuss
related approaches for ensuring the security compliance of software systems. Afterward, we
discuss related works aiming at the refactoring of software systems in Section 16.3. Last, in
Section 16.4, we discuss related works in the domain of software product lines.

16.1 Tracing between Models and Code

In GRaViTY, the tracing between models and code plays an essential role in the approach. Both,
the management and leveraging of traces are also an essential part of other works.

Winkler and Pilgrim performed a survey on traceability in requirements engineering and
model-driven development [346]. While traceability in both domains has much in common, they
are still separated. In requirements engineering traceability mainly means to follow requirements
throughout the development process and in model-driven engineering traceability mainly means
to explicitly create trace links between corresponding artifacts. While we consider security re-
quirements and follow them in case of security context knowledge changes, our approach tracing
mainly takes place in the area of model-driven development.

In the single underlying model approach (SUM), Atkinson et al. define a single model, that
can express all information about the software system [347]. Suitable views according to the
current task are extracted from this model. The SUM is comparable to the different connected
UML models of our approach, in which we integrate all design-time information. SUM supports
an automated extraction of views that could be helpful in GRaViTY for manual edits of the
generated parts of the implementation model. While we support well-known plain UML, SUM
made many modifications to the UML to support all those kinds of different abstractions. Also,
SUM does not provide an integration with the concrete implementation.

With VITRUVIUS Kramer et al. developed a SUM approach that also integrates Java source
code [348]. Unlike our approach, the trace links to the model are written into the source code as
annotations and might lead to unreadable source code, as discussed in Chapter 6.

On a very similar technical basis as our framework is the Codeling tool of Konersmann [349].
The idea of Codeling is the integration of architecture model information into the program
code. Like our approach, Konersmann uses TGGs for the model to model transformations at
architecture extraction. In contrast to us, he does not continuously keep the extracted models
up to date but always writes all changes, made on an extracted model, back to the source code.
Every time an architectural view on the software system is needed, Codeling extracts it again.
By doing so, Konersmann circumvents the challenge of incremental updates required by our
TGG-based synchronization, presented in Section 6.2.2, at the cost of massively increasing the
code base with additional information.

Combinations of models, metamodels, and transformations, such as those used in GRaViTY
for keeping all artifacts synchronized and allowing tracing, are often referred to as megamod-
els [350]. When developers work in parallel on different artifacts, issues regarding restoring
consistency can arise [351]. In GRaViTY, this can be the case if there are conflicting structural
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changes in the UML models and the source code. Stevens presents an approach for resolving
such conflicts based on build-time information [352].

Commercial tools like Enterprise Architect (EA) also provide round-trip engineering for UML
models and Code [353]. The main limitation of these tools is the restriction to UML models very
close to the code which eases the synchronization. While EA allows a translation from UML
stereotypes to Java annotations, which could be used for transferring UMLsec annotations into
the code, they do not support more complex information transfers.

While all approaches are dealing with the same challenges as us in similar ways, none of them
provides the support to maintain security requirements on different artifacts in a sophisticated
way and to check those security requirements in between the different artifacts.

Explicitly designed for the tracing of the security structure and properties is the SecSTAR
approach of Fang et al. [354]. SecSTAR monitors the software system execution and traces
security-related information throughout the software system. Based on the recorded diagrams
for security analysis are generated. These diagrams can be seen as part of the system model
considered by us. Nhlabatsi et al. present an approach to monitor assumptions about security
requirements, such as the location of devices, at run time [355]. Thereby, security requirements
are specified upfront and might be subject to knowledge changes as considered by us.

Similar to our considered problem of mapping DFD elements to code, feature location tech-
niques aim to find the code assets that contribute to the implementation of a given feature. Two
existing surveys [356, 357] summarize the variety of available techniques, which largely differ
in their assumed input, program representation, and required degree of user interaction. Most
closely related to ours are those works that derive an initial mapping based on name similarities
and use it as input for a structural search. Zhao et al.’s approach [358] assumes as input a set of
features provided in one textual description for each feature. They use an information retrieval
technique called Latent Semantic Analysis (LSA) to identify a set of seed elements deemed as
relevant for each feature. They then filter a call graph representation of the input program to
remove those branches that do not include a relevant element. Strüber et al.’s approach [359]
uses LSA in the same way, then scores all elements based on topology measures and assigns
each element to the feature it is deemed most relevant for. Font et al.’s approach [360] assumes
user-specific input seeds that they extend with a genetic algorithm to generate a candidate for
the implementation of the given feature; a textual description of the input feature is then used to
judge the relevance of the identified fragment. In contrast to feature location techniques, which
use textual descriptions and manually specified correspondences as input, we rely on a different
source of information. Our heuristics exploit the rich structural information given by the input
DFDs to guide the search of the program model; that is, we exploit an assumed correspondence
between the two models being available in our scenario.

16.2 Security Compliance of Models and Code

In this section, we discuss works related to the continuous security compliance checks between
models and code presented in this thesis. First, we focus on model-based works for the spec-
ification and analysis of security. Afterward, we discuss works explicitly focusing on security
compliance among different artifacts. Finally, we discuss works for monitoring or enforcing se-
curity at run-time.

16.2.1 Model-Based Security Analysis

An overview of model-based security analysis can be found in [361], which reviews existing ap-
proaches for security analysis of model-based object-oriented software designs, and identifies
ways in which these approaches can be improved and made more rigorous. A newer system-
atic literature review on model-driven security in general can be found in [362]. Most security
specifications of the considered works provide a DSL based on UML’s profile mechanism.

UMLsec [5] provides a model-based approach to develop and analyze security-critical software
systems, in which security requirements such as secrecy, integrity, and availability are expressed
in UML diagrams [4]. UMLsec is provided as a UML profile, containing different stereotypes and
tagged values to annotate UML diagrams with security requirements of which only a few have
been considered in this thesis. The CARiSMA tool performs the corresponding security analysis
[363]; it has been applied to various industrial applications, e.g., to investigate the security of the
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Common Electronic Purse Specifications [364]). Furthermore, UMLsec and CARiSMA are the
foundation for various other works. Ahmadian et al. extended CARiSMA to support privacy-
related security requirements and checks regarding their consistency [365, 366, 367, 368]. Also,
they provide support for selecting suitable measures for preventing the identified privacy threats.
Similarly, Ramadan et al. extend CARiSMA with fairness checks for preventing systematic
discrimination by the developed software system already at design time [369, 370, 371].

Siveroni et al. [372] researched supporting the design and verification of secure software sys-
tems, emphasizing the early stages of development like requirements elicitation. The proposed
approach realizes static verification of properties and enables to reason about temporal and gen-
eral properties of a UML subset, e.g. UML state machines. Formal verification carried out using
the SPIN model checker. The approach focuses solely on the early stages of software design and
thus only properties that can be checked statically.

Other work addresses the model-based use of security patterns [373, 374, 375]. Further
research makes use of aspect-oriented modeling for model-based security [376]. [377] proposes an
approach for model-based security verification.

16.2.2 Security Compliance

Existing works on maintaining security consistently in different development stages focus on
forward and reverse engineering, that is, the automated transformation of a more high-level
to a more technical representation, and back. Considering forward engineering, Ramadan et
al. [378] use model transformation to automatically generate security-annotated UML class mod-
els [5] from security-annotated BPMN models. Ahmadian et al. use security requirements
(SecBPMN [379]) to provide suggestions to developers which elements in UML diagrams might
correspond to the annotated BPMN elements [73, 368].

Most closely related to ours is the approach of Nguyen et al. [380, 381]. Comparable to us,
they propose a model-driven security approach. While we focus on data security, they focus
on authorization in the software system under development. Security requirements defined at
design-time, are enforced in later phases of software development and their enforcement is tested.
Concerning security tests, Schieferdecker et al. provide a survey on model-based security testing
techniques [382]. Besides architectural models, as considered in our approach, also threat, fault,
and risk models, as well as weakness and vulnerabilities models, are used for deriving security
tests. Usually, security tests can be automatically generated based on test generation criteria.

Abi-Antoun et al. [383], which is concerned with DFD-to-code conformance checks. They
automatically reverse engineer a DFD from the given implementation, calling it the source DFD.
The user has to specify a mapping between a manually created high-level DFD and the source
DFD, which is then used to uncover inconsistencies. In contrast to this manual approach to
mapping, our approach is semi-automated: It automatically proposes an initial set of mappings,
which is iteratively refined based on user feedback.

Some research addresses linking the model to the code level within model-based security
through model-driven reverse engineering [384, 385]; similar to our work, Martínez et al. [385]
use OCL to specify security policies.

Considering evolving software systems, Anisetti et al. present a security certification scheme
for evolving services [386].

Beyond the security scope of this paper, conformance checking is generally a well-studied
topic in model-driven engineering. Paige et al. [387] use metamodels as the common reference
point to enable conformance checks between diagrams representing different views on a software
system. Diskin et al. [388] present a framework for global consistency checks of heterogeneous
models based on constraints. By supporting the explicit specification of overlaps between the
considered models, they avoid the need for a global metamodel. Expanding on this work, König
and Diskin [389] improve the efficiency of this approach by supporting an early localization of
relevant parts of the models whose consistency is to be checked. Reder and Egyed [390] propose
an efficient approach to consistency checking based on predefined consistency rules. However,
none of these works address security, and an application to data flow-related threats as addressed
by DFDs is not obvious.

The problem of measuring attack surfaces serving as a metric for evaluating secure object-
oriented programming policies has been investigated by Zoller and Schmolitzky [212] and Man-
adhata and Wing [211], respectively.
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Closely related to the specification of security checks is the specification of design flaws, such
as code smells or anti-patterns. A common method to detect code smells and anti-patterns
through software metrics. Simon et al. define a generic distance measure that can be applied to
identify anomalies inducing certain refactorings in an underlying language [391]. Mäntylä makes
use of atomic metrics to evaluate their applicability for code smell detection compared to hu-
man intuition, concluding that metric-based detection often contradicts human perception [392].
Munro proposes to capture informal code smell descriptions by means of a set of metrics and to
identify possible occurrences in Java programs based on those metrics [393].

16.2.3 Run-time Security Monitoring

Lee et al. focused on inter-app communication in Android that may enable an attacker to inject
arbitrary activities [394]. Ultimately, user interaction can be hijacked to break the Android
sandbox mechanism. Thus, they propose a static analysis tool using operational semantics of
the activity life-cycle, unveiling potential vulnerabilities. In contrast to that, UMLsecRT aims at
providing the developer a lightweight model extension to cover up security risks in early design
phases, coupled with the source code and run-time.

Ion et al. [395] investigated the security policy architecture of J2ME (Java for mobile devices),
which in contrast to Java Standard Edition does not provide an extensible security architecture.
They modified the J2ME VM to be able to deal with custom security policies at run-time with
no considerable overhead. In contrast, UMLsecRT uses a Java agent and thus does not require
changes to the VM. By incorporating model-based design, we support developers in gaining
additional knowledge about how the code behaves at run-time.

Costa et al. present a more fine-grained and flexible policy-based security mechanism for
J2ME and implemented it in two variants [113]. First, similar to [395], by adapting the J2ME VM,
facing the issue that keywords in policies are restricted to the methods that can be intercepted at
fixed enforcement points. Second, based on byte-code manipulation, preceding and succeeding
every call to the J2ME API. They noticed a performance overhead below 5, while we achieve a
similar overhead, supporting full Java and monitoring all accesses.

Hiet et. al propose to secure Java Web applications by monitoring information flows [241].
They extend Blare, an intrusion detection tool on OS level, to realize a policy-based intrusion
detection by tracing inter-method flows in Java applications, supported by the JRE calling an
internal security manager before every I/O access. They encountered a slow down of factor 12 for
loading and factor 4 for execution. Blare requires a modified Linux kernel to run on, while JBlare
requires a modified JRE, which are heavy-weight assumptions against the target environment.
Reacting to breaches or preventing them as well as round-trip engineering is not discussed.

Bodden et al. present an approach to reduce the time to invest in run-time verification of
large programs [258]. Given a sufficient number of users, parts of the run-time verification are
distributed among the users. Instead of instrumenting the whole program, only a partition is
instrumented at a time. Using regular expressions, traces for unwanted behavior are specified.
The authors implemented two variants, noticing generally a high instrumentation overhead.

Staicu et al. performed a large-scale study of 235,850 Node.js applications, identifying two
APIs giving direct system access [396]. They tackle this issue by first building templates for
all values passed to injection APIs. After that, a run-time policy is synthesized to support
monitoring, which is integrated into the code by code rewriting. Checking also is supported at
design time by static checks.

Ognawala et al. propose a mixture of concrete and symbolic execution to detect non-trivial
vulnerabilities [397]. They let the user interactively investigate calls in-depth and assess pos-
sible vulnerabilities on a graphical representation. While the authors focus on other types of
vulnerabilities than we do, they also conclude that an interactive, graphical vulnerability report
supports developers to prioritize bug fixing activities.

16.3 (Security-aware) Refactorings

Various techniques have been proposed for both, graph-based program transformation and object-
oriented program refactoring. In this section, we mention the most important work and relate it
to the technique proposed in Chapter 10 of this thesis. Also, we discuss existing works regarding
their relation to security aspects of the refactored software systems.
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While general work on representing programs as graphs has been proposed decades ago [398],
recent work particularly focuses on graph transformation for the purpose of reengineering (e.g.,
refactoring). Initially, Eetvelde et al. proposed the application of graph rewriting rules to typed
program graphs for program refactorings [133, 134]. Based on this work, the notion of rule re-
finement to treat hierarchical program substructures as a whole, as well as the notion of rule
cloning are introduced for multiple instantiations of rewriting rules [399]. Thereupon, Mens et al.
developed a foundation for refactoring Java-like programs based on algebraic graph transforma-
tions that comprises object-oriented standard refactorings such as Pull Up Method and Extract
Field [23, 138]. Moreover, Ferenc et al. propose Columbus, a tool that applies metamodeling
techniques to support graph transformations on C++ programs [9]. With a particular focus on
Java, Corradini et al. proposed a graph transformation system for Java programs [135]. More-
over, mature tools, such as JaMoPP [141] and MoDisco [139, 159] exist that provide modeling
techniques to translate Java programs into a graph-based representation.

While all of the aforementioned approaches partially overlap with our proposed technique
(in fact, our refactorings are very similar to those proposed by Mens et al.), we extend existing
work by proposing a systematic and formalized method for bidirectional, graph-based program
transformation for the first time.

Program refactoring is a fundamental concept in software reengineering for specifying al-
lowed changes in a software system. It has been proposed more than 15 years ago as a means to
improve the structure of source code in a behavior-preserving fashion [17, 63]. However, while
the concept and the technique have been shown to be valid and useful, many existing imple-
mentations, such as in the Eclipse IDE, are limited (or even erroneous) due to their informal
nature [65, 68]. Hence, various methods have been proposed to formally specify refactorings
and, thus, to allow for verifying behavior preservation. For instance, Schaefer et al. formulate
refactoring as a dependency preservation problem that, amongst others, preserves name bindings
after refactorings [66]. Moreover, they extend the idea of decomposing refactorings by consid-
ering micro-refactorings as very basic blocks of macro-refactorings, being easier to implement
and verify [62]. Thereupon, chained refactorings are built by applying macro-refactorings in a
predefined order. Further works on making refactorings more reliable use constraint checking [68]
and type checking [61]. We extend these methods by a) proposing a graph-based method for
refactoring and b) by supporting the co-evolution of the textual and graph-based representation
of the program utilizing bidirectional program transformation.

To test the correctness of performed refactoring operations, Mongiovi et al. propose SafeR-
efactorImpacthas [400] that analyzes a refactoring operation and generates test cases for the
impacted methods.

Steimann and Thies were the first to propose a comprehensive set of accessibility constraints
for refactorings covering full Java [68]. Although their constraints are formally founded, they do
not consider software metrics to quantify the attack surface impact of (sequences of) refactorings.
Alshammari et al. propose an extensive catalog of software metrics for evaluating the impact
of refactorings on program security of object-oriented programs [209]. Similarly, Maruyama and
Omori propose a technique [269] and tool [30] for checking if a refactoring operation raises secu-
rity issues. However, all these approaches are concerned with general security and accessibility
constraints of specific refactorings, but they do not consider explicit security requirements.

Ghaith and Ó Cinnéide consider a catalog of security-relevant metrics to recommend refactor-
ings using CODe-Imp [401]. Finally, Abid et al. propose to prioritize refactoring operations to
improve the quality of security-critical code first for preventing future security violations [402].
Security-critical files that should be prioritized at refactoring are identified by the history of
vulnerabilities, security bug reports, and a set of keywords.

16.4 Software Product Lines

We consider related works regarding software product lines in two directions. First, we generally
consider the transformation of product lines. Here, we mainly relate other works to our variability
extension of Henshin introduced in Chapter 13. Second, we consider approaches targeting the
security of software product lines.
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16.4.1 Product Line Transformations

During an SPL’s lifecycle, not only the domain model but also the feature model evolves [403,
404]. To support the combined transformation of domain and feature models, Taentzer et al. [405]
propose a unifying formal framework that generalizes Salay et al.’s notion of lifting [318], yet in a
different direction than us: focusing on combined changes,this approach is not geared for internal
variability of rules; similar rules are considered separately. Both works could be combined using
a rule concept with separate feature models for rule and SPL variability.

Beyond transformations of SPLs, transformations have been used to implement SPLs. Feature-
oriented development [341] supports the implementation of features as additive changes to a base
product. Delta-oriented programming [406] adds flexibility to this approach: changes are speci-
fied using deltas that support deletions and modifications as well. Impact analysis in an evolving
SPL can be performed by transforming deltas using higher-order deltas that encapsulate certain
evolution operators [317]. For increased flexibility regarding inter-product reuse, deltas can be
combined with traits [407]. Sijtema [320] introduced the concept of variability rules to develop
SPLs using ATL. Conversely, SPL techniques have been applied to certain problems in trans-
formation development. Xiao et al. [408] et al. propose to capture variability in the backward
propagation of bidirectional transformations by turning the left-hand-side model into an SPL.
Hussein et al. [322] present a notion of rule templates for generating groups of similar rules based
on a data provenance model. These works address only one dimension of variability, either of an
SPL or a transformation system.

In the domain of graph transformation reuse, rule refinement [321] and amalgamation [337]
focus on reuse at the rule level; graph variability is not in their scope. Rensink and Ghamarian
propose a solution for rule and graph decomposition based on a certain accommodation condition,
under which the effect of the original rule application is preserved [409]. In our approach, by
matching against the full domain model rather than decomposing it, we trade off compositionality
for the benefit of imposing fewer restrictions on graphs and rules.

16.4.2 Security of Software Product Lines

Sion et al. [410] present a research agenda towards systematically addressing security concerns in
software product lines in a way that considers security separate from other variability dimensions
by allowing to express security and its variability, select the right solution, properly instantiate a
solution, and verify and validate it. This research agenda seems certainly relevant and worthwhile,
but there do not seem to be results published to date.

Myllärniemi et al. [411] propose a kind of modeling language for specifying security and
functional variability at the architectural level of a software system. Their solution allows the
user to select among multiple countermeasures; however, security analysis in the style of our
work is not possible in this solution, since security requirements on the level of threats and assets
are deliberately left outside the scope of this work.

Nadi and Krüger [412] use the modeling language Clafer, which combines feature modeling
and metamodeling, for modeling cryptographic components. In comparison, their work could be
considered a specific product line of security-relevant software products, whereas our goal is to
apply security concepts to harden arbitrary software product lines.

Mellado et al. [413, 414] present approaches which deal with security requirements from the
early stages of the product line life cycle systematically and intuitively way especially adapted
for product line based development. These works do neither address the system design nor the
implementation, as we do in this thesis.

Fægri and Hallsteinsen [415] present a software product line reference architecture for security.
This work does not use a model-based design approach, as we do.

General scalability issues arising due to variability have motivated a variety of software anal-
yses for SPLs; for an overview, see the comprehensive survey by Thüm et al. [416]. A key
distinction is that between product-based approaches that operate on a selection of all products,
and family-based ones that lift the analysis to a representation of the overall SPL. Product-based
approaches are useful in scenarios where the result does not need to be complete, a prime example
being testing.

Model-based testing of SPLs [286, 417, 418, 419] focuses on the use of dedicated test models
for this purpose. To improve test coverage, Cichos et al. [286] derive test cases from a “150%”
test model for the SPL, and Johansen et al. [417] use a certain notion of covering arrays that
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can be derived from the feature model. Ali et al. [418] propose a methodology for reducing the
specification effort during model-based testing of SPLs. Lachmann et al. prioritize products by
their risk for failures for integration tests of SPLs [420]. These approaches do not aim to ensure
a complete analysis of all products of the product line.

The SecPL security analysis and security checks based on the multi-variant model transforma-
tion, introduced by us, fall into the category of family-based analysis, which aims at completeness
w.r.t. all products. Most works in this category focus on program analyses, such as syntax and
type checking [421], static program analysis [422], or model checking [422]. A seminal model-level
work is the well-formedness analysis for model templates by Czarnecki and Pietroszek [301] that
we used as a foundation for our analysis (see Section 12.3). While this work operates on vanilla
UML models to validate well-formedness constraints, our analysis works on stereotyped UML
models for checking security requirements. Salay et al’s [318] work on the lifting of transforma-
tion rules to model-based SPLs includes a matching step that can be considered a family-based
analysis. However, none of these works addresses security.
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Chapter 17

Conclusion

This thesis aimed at investigating the state of the art of security compliance in model-driven de-
velopment and maintenance of variant-rich software systems, the identification of open problems
in realizing. As motivated in the introduction to this thesis, considering security at the devel-
opment and maintenance of software systems is as challenging and important as never before.
While software systems are becoming more complex, they also process more sensitive informa-
tion, and new attack vectors constantly emerge. Among others, this especially applies for the
sector of health care, considered throughout this thesis in terms of the iTrust EHR system as the
running example. In recent research, following the principle of security by design [27], various
approaches for eliciting suitable measures within a software system’s design have been devel-
oped [5, 109, 362]. However, the compliance of a software system’s implementation with the
planned security stayed an open issue tackled in this thesis.

As discusses in Chapter 3, besides design-time security approaches, there are various ap-
proaches for supporting the development of secure software systems in all stages of software
development. However, mostly these approaches are limited to their local specialties and are not
integrated as required for the effective development of secure software systems. One reason for
this lack of integration is missing traceability among the development artifacts of software sys-
tems. Furthermore, often, this causes inconsistencies, e.g., between the planned and implemented
design. To be more precise, such inconsistencies, potentially leading to security violations, are
often caused by continuous changes as part of the development process. Often, such changes are
not reflected in all artifacts. Regarding security, not only structural consistency is essential but
also security preservation. For this reason, practitioners frequently claim that they cannot apply
simple refactorings without requiring a full re-certification of the whole software system. Finally,
the significant reuse among software systems, e.g., in terms of variants of a product, makes all
of this even more complicated.

To overcome these problems, in this thesis, we presented an integrated approach for con-
tinuous security compliance checks at the model-driven development of software systems. The
proposed GRaViTY approach addresses the five challenges, identified at problem discussion in
Section 1.1, for supporting security compliance at the development and maintenance of variant-
rich secure software systems as follows:

Inconsistency and missing traceability: In Chapter 6, we introduced a combination of trac-
ing within UML models and correspondence model-based tracing between UML models and
their implementation. While we use standard UML technologies for tracing among UML
models with different abstraction, we employ TGGs [423], a bidirectional graph transforma-
tion technology, for tracing between models and code. Based on transformation rules, TGGs
build a correspondence model between two models and allow to automatically synchronize
changes between the two models. This allows us to prevent inconsistencies throughout
the software development automatically. Furthermore, in Chapter 7, we discussed semi-
automated restoring of traceability and the reverse engineering of UML models.

Non-integrated solutions: To overcome non-integrated solutions, GRaViTY connects design-
time security with implementation-level security. In this regard, the presented automation
allows us to effectively check security at low costs by allowing security experts to only
specify security requirements once in combination with an automated propagation based
on our tracing mechanism. In Chapter 8, we discussed the leveraging of design-time security
requirements for implementation-level security checks. Based on the design-time security
specifications, we execute implementation-level security checks. Besides newly developed
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checks, specifically tailored for verifying considered design-time security requirements, we
also discussed how state-of-the-art taint analysis can be improved by connecting design-
time security with the data flow analyzer. Finally, in Chapter 9, we presented a run-
time monitor for detecting and mitigating violations of design-time security requirements.
Furthermore, we support an adaption of the design-time models to allow an inspection of
observed security violations.

Security-aware restructuring: For supporting the security-aware restructuring of software
systems, in Chapter 8, we introduced incremental security violation patterns that can be
used for detecting security violations after changes. Especially, we discuss their incremen-
tal execution for efficiently verifying the security compliance of single changes instead of
full security compliance checks. In addition, we provide security-preserving refactorings
for ensuring security compliance at implementation-level restructuring in Chapter 10. The
security-preserving refactorings allow checking security compliance of changes before mod-
ifying the implementation.

Variant-rich systems: Finally, in Chapter 11, we investigated the application of the proposed
approach to variant-rich software systems. For the verification of the consistency of UMLsec
security requirements in model product lines, we encoded the checks as OCL constraints
and applied a state-of-the-art template interpretation approach. For the application of ar-
bitrary pattern-based checks, e.g., the security violation patterns or our security-preserving
refactorings, we extended the Henshin graph transformation engine to support variability
in two dimensions. First, we support variability within transformation rules, and second,
the models the rules are applied to.

Besides evaluations of the single contributions within the proposed approach, we successfully
evaluated the feasibility of the overall approach on two real-world case studies in Chapter 15.

17.1 Research Outcomes

At the beginning of this thesis, in Section 1.3, we identified five research questions regarding the
development of secure software systems based on the identified problems. In this section, we
summarize our research outcomes and give answers o the research questions.

RQ1: How can security requirements be traced among different system representations throughout
a software system’s development process?

We investigated the suitability of refinement relations for tracing among UML models. In
this regard, UML already comes with sufficient language elements for the specification of trace
links among UML models with different abstractions. However, the creation and maintenance
of trace links among UML models is laborsome but can be assisted by tool support. For the
tracing of security requirements among UML models more sophisticated refinement rules have to
be defined. For this purpose, we extended the UMLsec profile for tracing security refinements.
For the tracing between UML models and the implementation, we identified TGGs as a suitable
solution that not only provides trace links but also a mechanism for change propagation.

RQ2: How can we apply model-based security engineering to legacy projects that have no or
disconnected design-time models?

We identified the creation of suitable tracing structures between models and code as the
main challenge in applying the GRaViTY approach to legacy projects. For this reason, we
investigated the suitability of the TGG approach for reverse engineering UML class diagrams
including correspondence models for tracing. We successfully demonstrated the application for
reverse engineering UML class diagrams. For supporting early design-time models, we proposed
a semi-automated mapping approach for restoring a correspondence model between the design-
time models and the implementation.
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RQ3: How can developers be supported in realizing, preserving, and enforcing design-time security
requirements in software systems?

We discussed leveraging the created trace links for security compliance checks among models
and the implementation. Based on these trace links, structural compliance can be verified in
terms of correspondence, divergence, and absence. Regarding explicit security compliance, we
identified two possibilities for security tracing, namely the propagation of security requirements
and dynamic security tracing. Using the provided security tracing, developers can be supported
by security checks in implementing a security-compliant software system. First, security checks
tailored to single design-time security requirements can be executed on the implementation parts
corresponding with relevant model elements for checking the presence of security measures in the
implementation. Here, we demonstrated the feasibility of static checks and dynamic checks at
run-time. Second, the configuration of state-of-the-art security analyses can be optimized to be
more precise and effective. Altogether, developers can be supported by automatically reporting
security violations in the implementation concerning design-time security requirements. Further-
more, the adaption of design-time models based on observations at run-time allows developers
to investigate security violations and improving software systems.

RQ4: How do changes within a software system affect its security compliance, and how can these
effects be handled?

Changes in a software system can affect security in manifold directions. For handling the
effects of changes, we investigated two approaches. First, an automated propagation of changes
to all artifacts of a software system in combination with an incremental re-execution of security
compliance checks on the parts of the software system affected by the change. The TGGs used
for tracing allows the propagation of changes between the UML models and the implementation
followed by an automated security verification. Here, the security violation patterns allow an
incremental verification of the implemented security. Second, the prevention of violating changes
by enriching change specifications with security-preserving constraints. Taking OO refactorings
as change specifications, we investigated how security-preserving refactorings can be specified
and executed. Such security-preserving refactorings allow the restructuring of a software system
by preserving its security. In combination, both approaches allow to effectively handle the impact
of changes on a software system’s security.

RQ5: How can we verify and preserve security compliance in variant-rich software systems?

The main challenge in supporting software product lines is the practical infeasibility of apply-
ing the developed security checks and security-preserving refactorings to all products of an SPL.
Also, for allowing tracing within a software product line, variability has to be supported on all
artifacts of the software system. However, when specifying variability similarly on all products,
structural and security tracing using our approaches does not differ from a single product soft-
ware system. For supporting security compliance within SPLs, we investigated the application
of security checks and security-preserving refactorings to SPLs by specifying formally these and
utilizing application technologies that take care of the variability. This way, variability has not to
be considered in the specification of the security checks and refactorings, allowing the application
to both single product software systems and SPLs. For verifying security on model product lines,
we demonstrated the suitability of the interpretation of OCL constraints to verify UMLsec secu-
rity requirements. For the application of security-preserving refactorings and security violation
patterns, we introduced multi-variant model transformations.

17.2 Assumptions and Limitations

Throughout the thesis, we outlined assumptions on the application of the single parts of our
approach and discussed its limitations. In this section, based on the discussed assumptions and
limitations, we discuss assumptions and limitations for the overall GRaViTY approach.

17.2.1 Required Artifacts

Our main assumption is that our approach will be applied to software systems developed using
a model-driven development approach. The presence of design-time models as a prerequisite for
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using our approach might lead to limitations of its applicability. In this regard, we consider two
factors that might limit the practical applicability of our approach.

First, the required model-driven development approach might not be applicable in the context
of agile project development. However, considering the legal requirements in many security-
critical domains, standards such as the ISO/EC 62304 for the development of medical device
software [6], the development, and maintenance of the artifacts required by our approach is a
prerequisite in most cases. Such standards do not require specific development processes as long
as the required artifacts are provided. The same applies to our approach. For example, Rumpe
demonstrates how software systems can be developed agile using model-based development [424].

Second, our approach may not be able to reimburse the costs incurred to create the required
models. However, as our approach’s main scope is large software systems developed for strongly
regulated areas, these artifacts are likely required by standards, with which the software systems
have to comply. In this case, there are no additional costs for using our approach. For all other
software systems, the application of our approach might require additional effort to create those
artifacts. From this perspective, the only reason standing against our approach might be that,
up to some size, manually keeping the security context knowledge up to date and manually
selecting measures in case of changes might be more cost-efficient than using our approach for
(semi-)automating these activities. In comparison with this, the automated reverse-engineering
of UML models can be a cost-efficient solution to apply our approach. Either way, if developers
want to apply our approach, they have to implement model-driven development practices.

17.2.2 Tracing and Synchronization

The application of the TGGs for realizing the tracing and synchronization gives rise to multiple
limitations. These limitations mainly consider the detailedness of the used models and transfor-
mations as well as concurrent change handling. As a consequence, these have an effect on the
application of the approach and might limit its application or extension.

First, the specification of the transformation is laborsome and sometimes needs preprocessing
for being realizable. This high effort might limit the approach’s applicability to other program-
ming languages than Java.

Second, as well the TGGs of our approach as the semi-automated mappings require detailed
models of a software system. The synchronization between models and code, needs a UML class
diagram on the same level of abstraction as the implementation. The semi-automated mappings
need less detailed models but the considered DFDs might still be more detailed than practitioners
would specify them, e.g., as a part of STRIDE [108].

Third, conflicting concurrent changes is not only a problem concerned with the TGGs used
by us, but generally this problem is relevant for the synchronization of multiple artifacts that
may change independently of each other. In the context of megamodels, this problem has been
discussed in detail for transformations comparable to the ones considered by us [350].

17.2.3 Security Requirements and Checks

In this thesis, we only considered a limited set of security requirements. We focus on data
security in terms of security levels and processing contracts. However, for capturing security at
its full extend, additional security requirements have to be considered. Such additional security
requirements could not only require additional ways to specify them on all relevant artifacts but
could also open new challenges in tracing and synchronization.

As a consequence of the selected security requirements, currently, we only verify the structural
properties and the presence of security measures. Consequently, we do not verify the completeness
of enforcing design-time security requirements. While this still allows to detect a wide variety
of security compliance issues, additional security checks might be required to reach a state of
completeness that would allow an automated security certification.

For specifying security checks, besides hand-written code, we inspected the suitability of graph
transformation rules and OCL constraints. However, security checks are often based on path
expressions or detailed analysis on statement level currently not supported within GRaViTY.
Although specifying security checks based on such concepts can simply be supported by using
additional tools, e.g., the Graph Repository Query Language (GReQL) of JGraLab for path
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expressions [425, 426], more foundational research is necessary for applying path expressions to
software product lines.

17.2.4 Security Preservation and Re-Certification

Although one of the motivations of this thesis was to allow the preservation of security in case of
changes as an step towards supporting incremental re-certifications, the support for this is still
limited. The proposed security-preserving refactorings allow including certification preserving
constraints but possibly limit the applicability of the refactorings to non security critical cases. As
a consequence, when a security-critical part of a software system has to be refactored, it is likely
that changes are necessary that require an re-certification. In such cases, incremental security
verification approaches such as the proposed security violation patterns can help in efficiently
detecting security violations caused by changes but are not in a state in which guarantees can
be given. For this purpose, additional security requirements have to be covered.

Nevertheless, the proposed approaches are still a significant step towards automated re-
certifications in case of minor changes. Our approach gives a framework that allows the specifica-
tion and execution of incremental security compliance checks between an accepted security design
and its implementation. For automated re-certifications, a sufficient set of security requirements
and corresponding security compliance checks have to be defined.

17.2.5 Software Product Lines

Within our approach, we assumed a one to one representation of variability on all artifacts of
a variant-rich software system. However, in practice, there might be the case that variability is
expressed with different abstraction among the different artifacts, e.g., more detailed variabil-
ity specifications on the implementation level than in the design models. This might lead to
side effects not captured by our approach and limiting the applicability. However, only differ-
ent variability specifications on corresponding elements can cause problems, e.g., more detailed
variability specifications at the level of method bodies can be handled by our approach.

In this thesis, we assumed that it is essential to always verify the security of all products of an
SPL. Although there is evidence that security fixes applied to single products can be exploited
for attacking other products [298, 299], the underlying assumption is that there are products on
the market that have not been checked. In this regard, there might also be product lines that
have theoretically very many variants but only a few are released. In such cases, it might be
more cost effective to check only released variants for security.

17.3 Outlook

Although the proposed GRaViTY approach is a significant step towards effective continuous
model-based security engineering, multiple research directions have potential for further im-
provements and research. In this section, we discuss potential future improvements considering
three principles for improvement:

Extension: Possible extensions to the approach for improving continuous model-based security
engineering, e.g., by widening the scope of the GRaViTY approach or providing new levels
of automatization.

Combination: Possible combinations with other approaches for providing additional advan-
tages to continuous model-based security engineering.

Actualization: New approaches or optimizations that overcome parts of the proposed approach
for improving the overall GRaViTY approach.

Based on these three principles, in what follows, we discuss possible future research directions.

17.3.1 Automated Trace Creation

As discussed in the limitations of the approach, the creation of trace links is currently entirely
manual among UML models and based on strict rules between UML and the implementation.
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Furthermore, these detailed rules require very detailed design-times models. An automated
tracing at model-refinement and between models and code that is not based on strict rules would
be a substantial actualization of the approach. Monitoring of artifacts touched by developers
could be a suitable source for automatically deriving trace links. This way, tracing would be more
flexible and could cover additional software development artifacts, e.g., textual requirements,
without special treatment.

Also, the used MoDisco parser currently prevents GRaViTY from practically synchronizing
UML models and their implementation in case of implementation-level changes. To overcome
this issue, other parsers that support incremental parsing should be investigated and our imple-
mentation should be actualized accordingly. Similarly, one can actualize the implementation of
our semi-automated mappings to support UML activity diagrams.

17.3.2 Continuous Integration

Automated security compliance checks in case of changes are also one main characteristic of
popular security approaches such as SecDevOps [125]. If our approach is deployed within a
continuous integration framework, it can be integrated into SecDevOps, complementary to other
vulnerability detection techniques such as penetration testing or static code analysis. In this
case, the combination with our approach adds a new level of automatization beyond local security
checks on single artifacts. Our approach will be executed together with other automated security
tests that focus on fine-grained local security requirements while our approach contributes the
tracing and compliance checks between security requirements.

17.3.3 Multi-Language Software Systems

The key idea of the program model, presented in Chapter 5 of this thesis, is to be suitable for
giving a high-level representation of arbitrary OO program. In this thesis, we only demonstrated
the suitability for Java programs. The evaluation of the suitability for representing program
written in other languages will be investigated in future works. However, assuming this suitabil-
ity, we are not limited to program models for software systems written in a single programming
language but can represent the whole implementation of multi-language software systems in a
single program model. In such a program model, all dependencies between the different parts of
the software system would be explicit which would allow more comprehensive security analyses
and would reduce the reliance on assumptions at the borders of the single parts. This future
research is likely to require an actualization of our program model’s type graph and an extension
to create program models for other programming languages. Here, one should investigate the
combination with other state of the art parsers, such as Eclipse CDT for C/C++ code1.

17.3.4 Security Requirements and Checks

The most potential for future research is in the area of covered security requirements and security
checks. In this regard, the approach could be extended to cover additional security requirements.
In this thesis, we mainly focused on data security in terms of security levels, data flows, and
basic data processing contracts. Additional security requirements can be research regarding data
security but also regarding other security requirements. Regarding data security, concepts such as
authorization could be considered for improving the approach. Additional security requirements
could comprise availability or authentication. Future works can cover both the extension in terms
of new security profiles and checks or the combination with existing additional security profiles.

17.3.5 Customization

The ultimate goal is to support security requirements that cover all aspects of security. As
security is subject to continuous change [427], suitable interfaces for adjusting the supported
security requirements are needed. Furthermore, relevant security requirements and according
security checks for verifying the security compliance of a software system are likely to be system
specific. In this regard, CARiSMA provides an interface for registering new security profiles and
model-level checks and Hulk provides an interface for registering program model level analyses

1Eclipse CDT (C/C++ Development Tooling): https://www.eclipse.org/cdt/

https://www.eclipse.org/cdt/
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that are inherited by GRaViTY. However, for entirely supporting customization, additional logic
for orchestration of the checks is required. In the best case, all extensions are centrally managed
by GRaViTY and can be specified using a simple domain specific language (DSL).

17.3.6 Expressiveness of Languages

In this thesis, we used multiple languages to express security checks. For expressing incremental
security violation patterns, we used the notation of graph transformation rules. For applying
UMLsec checks to software product lines, we expressed these as OCL constraints. However, we
identified limitations in these languages in expressing all kinds of security checks. For example,
currently, no path expressions are supported. Furthermore, comparable to the customization of
the security checks, a single DSL for specifying all kinds of security checks would be desirable.
Accordingly, in future works, one should explore which concepts are required for expressing
security checks to its full extend and will provide a DSL for specifying these. The execution of
the specified security checks can be realized by extending used tools or combining GRaViTY
with additional tools for execution.

17.3.7 Distributed System Analysis

For tailoring taint analysis to the security specifics of a software system, we leveraged security
information captured in design-time models. A case very often covered in design-time models but
never in a software system’s implementation is information about entities the software system
is interacting with. From a security perspective, this information is among the most valuable
security information as it directly specifies parts of a software system’s attack surface, namely
the intended surface of the software system. In future works, this information can be leveraged to
optimize implementation-level security analysis or to even provide analyses not possible before.
Ultimately, the leveraging of this design-time information can allow performing holistic security
analyses considering all implementations of distributed systems.

17.3.8 Code Generation

In this thesis, we considered code generation only for generating the foundational structure of a
software system’s implementation. As the design-time models used in our approach contain de-
tailed security requirements, these requirements could be leveraged for automatically generating
suitable security mechanisms into the implementation. This way, we could tackle two problems.
First, we can reduce the cost of implementing these security mechanisms. Second, often security
mechanisms are implemented insecurely due to wrong usage of APIs [116]. To avoid such cases,
correct code, e.g., for opening a secure socket, could be generated that is connected with the
manual implementation afterward.

17.3.9 Software Product Lines

Regarding software product lines, the most obvious future work is the application of all parts of
GRaViTY that currently only support single products, e.g., structural and contract compliance
checks. The same applies for all future extensions already discusses in this section. Of special
interest in this regard, are the support of path expressions on software product lines as these
allow to specify an additional category of security checks.

Entirely out of scope for this thesis are effects on security caused by the specification of vari-
ability itself. Although we considered variability of design-time security requirements impacting
the run-time security behavior of a software system, e.g., under which run-time circumstances
an encrypted communication path is required, we did not investigate this further on the imple-
mentation or run-time level. Here, the variable parts of a software system immediately interact
with the software system’s security. In most cases, unlike the explicit variability specification at
the model level, such variability is likely to be realized in terms of variables. In future works,
this can be investigated in more detail. Furthermore, GRaViTY can be extended with static and
dynamic support for security compliance analysis targeting on such cases.
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17.4 Summary

In this thesis, we discussed continuous model-based security engineering. For ensuring the se-
curity of contentiously evolving variant-rich software systems it is essential to support the im-
plementation with continuous automated security compliance checks. For this purpose, suitable
trace links among models and with the implementation have to be maintained. In the best
case, these trace links are automatically updated and utilized to keep the models structurally
consistent with a changing implementation. Finally, for avoiding insecure products, security
compliance checks should not only cover single variant of a software system, e.g., executed at
release of the product, but always consider the whole software product line. In this regard, the
approaches presented in this thesis, substantially contribute to realizing continuous model-based
security engineering.
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