
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ???? 1

UMLsecRT: Reactive Security Monitoring of
Java Applications with Round-Trip Engineering

Sven Peldszus, Jens Bürger, Jan Jürjens

Abstract—Today’s software systems tend to be long-living and often process security-critical data, so keeping up with ever-changing
security measures, attacks, and mitigations is critical to maintaining their security. While it has become common practice to consider
security aspects during the design of a system, OWASP still identifies insecure design as one of the top 10 threats to security.
Furthermore, even if the planned design is secure, verifying that the planned security assumptions hold at run-time and investigating
any violations that may have occurred is cumbersome. In particular, the configuration of run-time monitors such as the Java Security
Manager, which could enforce design-time security assumptions, is non-trivial and therefore used in practice rarely. To address these
challenges, we present UMLsecRT for automatically supporting model-based security engineering with run-time monitoring of
design-time security specifications and round-trip engineering for propagating run-time observations to the design level. Following the
established security-by-design approach UMLsec, security experts annotate system models with security properties that UMLsecRT
automatically synchronizes with corresponding source code annotations for the automatic configuration of UMLsecRT’s run-time
monitor. To this end, UMLecRT monitors these security properties at run-time without additional effort to specify monitoring policies.
Developers can define mitigations for attacks detected at run-time in advance by adjusting the automatically synchronized annotations
at implementation time. Triggered by a security violation, UMLsecRT can adapt the design-time models based on run-time findings to
facilitate the investigation of security violations. We evaluated UMLsecRT concerning its effectiveness and applicability to security
violations extracted from real-world attacks and the DaCapo benchmark, conducted user studies on the usability of the adapted models
and the feasibility of UMLsecRT in practice, especially concerning countermeasures, and investigated the scalability of UMLsecRT. To
study the applicability of the whole development process, we applied UMLsecRT in two case studies to the Eclipse Secure Storage and
the electronic health record system iTrust.

Index Terms—Security, Runtime Monitoring, Security Monitoring, Security Mitigation, Round-trip Engineering, UML, UMLsec, Security
by Design, Model-based Development, Java

✦

1 INTRODUCTION

IN today’s software, security is one of the most important
quality aspects [1], [2], [3], [4], [5]. Already in 2021,

OWASP identified the insecure design of systems as one
of the biggest security threats [6]. While there are several
approaches to support security at design time, such as using
design-time models [7], [8], [9], but also statically during
implementation [10], [11] and at runtime [12], [13], [14],
few cover the coupling of these phases. Since practice has
shown that it is likely that there will always be some kind of
exploit, it is insufficient to consider the different approaches
in isolation. While implementing well-designed measures to
enforce the security design of a system, we should always
assume that the system is vulnerable and actively monitor
for violations of the fundamental security properties of the
security design, such as the secrecy and integrity of data
and services. Whenever a security violation is detected, it
must be mitigated, and developers must be provided with
information to investigate and improve the system.

During software development, different representations

• S. Peldszus is with the Ruhr University Bochum, Bochum 44801, Ger-
many. E-mail: sven.peldszus@rub.de

• J. Bürger is with the Conciso GmbH, Dortmund 44269, Germany.
• J. Jürjens is with the University of Koblenz, Koblenz 56070, Germany &

the Fraunhofer Institute for Software and Systems Engineering (ISST),
Dortmund 44227, Germany. E-mail: juerjens@uni-koblenz.de

Manuscript received TBA; revised TBA.
(Corresponding author: Sven Peldszus.)
Digital Object Identifier no. 10.1109/TSE.????.???????

of a system are created, e.g., to plan the security of a system
before its implementation [8], [15], [16], [17]. When changes
are made, all of these representations must be updated to
reflect the changes, and all security assumptions must be
re-verified [18]. An automation of this process is commonly
referred to as round-trip engineering [19], [20], [21]. Current
round-trip engineering approaches focus only on maintain-
ing architecture models during the normal development
process [20], [21], [22], but neglect security. They focus on
changes that occur as part of the usual development pro-
cess, but for security we also need to consider unexpected
changes, such as deploying the system with a different li-
brary version, or changing system behavior due to an attack.
To the best of our knowledge, no existing approach to secure
software engineering supports round-trip engineering, even
though it is important for several security-related reasons.

While it is desirable to discover vulnerabilities as early
as possible [23] and support for automating vulnerability
detection and reaction should be provided already at design
time, many security vulnerabilities are difficult to detect in
design artifacts or source code [24], [25], [26]. This applies
especially to vulnerabilities based on language features that
are not entirely statically analyzable, such as Java reflec-
tion [27], [28]. Here we need the ability to enforce design-
time security decisions at runtime. While several security
monitors have been developed [29], [30], [31], [32], and the
Java Security Manager is even part of the standard Java
library [33], they have never been widely used in practice.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

Reasons for the lack of usage include a huge effort to con-
figure security monitors such as the Java Security Manager
and a too coarse-grained granularity of supported security
rules, which ultimately led to its deprecation in 2021 [34].

Furthermore, divergences between the design-time secu-
rity assumptions and the implementation likely appear [35].
In this regard, it is essential to keep all artifacts synchronized
to ensure the security of a system, e.g., when restructuring
the system’s design [18]. However, even in a statically secure
system, security violations can occur at runtime. To ease the
investigation of violations, the design-time models should
be automatically adapted to contain runtime observations
and their relationships to the planned security design.

In this work, we propose UMLsecRT, which allows de-
velopers to specify fundamental security properties con-
cerning secrecy and integrity in design-time models using
established security engineering methods, or alternatively
directly in the source code, and to monitor their compli-
ance at runtime. We consider attackers that are able to
inject custom Java code or manipulate code execution in
a way that leads to a violation of the specified security
properties. Violations and findings at runtime, like possible
attack sequences, can be synchronized back to the model
by adapting it. If a security property is violated, e.g., by a
vulnerability introduced during an update or an attack, the
system operator is notified and the system is brought into a
safe state. What is considered a safe state in which situation
is also handled within the security properties.

To ease applicability and avoid additional effort, we rely
on security properties as specified in UMLsec [8]. UMLsec
provides a well-known UML extension for modeling and
verifying secure software systems, and has been applied
in industry [36], [37], [38], [39], [40], [41]. Since early se-
curity engineering is essential, we assume that security
annotations similar to UMLsec have already been applied
to design-time models as part of the development process.
Such security modeling can be supported by natural lan-
guage processing [2], [42].

Figure 1 visualizes our approach for enforcing design-
time security specifications at runtime and adapting system
models based on runtime information. We explain the usage
of the approach step by step:

1) For round-trip engineering, UMLsecRT requires a UML
model that is consistent with the source code (e.g., a
class diagram for the UMLsec security annotations used
for demonstration in this work). If such a model is
not available, UMLsecRT supports reverse engineering
it from Java source code. If only security monitoring
is required (thus neglecting round-trip engineering),
developers can work only on the source code, to which
the security annotations are then applied directly.

2) A developer annotates, assisted by tool support [43],
the UML model, the source code, or both with secu-
rity properties derived from the project’s requirements.
Thereby, as part of the standard security-by-design pro-
cedures, the UMLsec annotations can be directly used
for static security checks using the tooling of UMLsec.

3) UMLsecRT automatically synchronizes annotations
added to the model with the source code and vice
versa. If developers annotate only the UML model,
UMLsecRT can automatically generate all source code

Code at
Run Time

UML
Model

Java Source
Code

4) execute & monitor

5) adapt model3) sync security annotations

2) annotate

1) reverse engineering

Run-time
Monitor

Fig. 1: Concept of the UMLsecRT approach.

annotations from the model. Optionally, developers can
specify reactions to security violations by detailing the
source code annotations.

4) The annotated Java source code is executed and the
execution is monitored for security violations wrt. the
security annotations added in the earlier steps.

5) UMLsecRT adapts the models based on the security-
relevant data collected at runtime, e.g. by adding se-
quence diagrams describing detected violations.

We conclude the introduction by highlighting the contri-
butions of this paper:

i) We introduce runtime security monitoring of Java ap-
plications concerning design-time security specifica-
tions, avoiding the huge overhead for manually con-
figuring of a security monitor (Section 3.2).

ii) We support synchronization of security annotations
between design models and source code, reducing the
burden of manually annotating an entire code base
and making it easier to implement design-time security
specifications (Section 3.1.1).

iii) We provide support for active countermeasures to mit-
igate attacks at runtime (Section 3.3).

iv) We support round-trip engineering by adapting the
model with automatically generating sequence dia-
grams of attacks and call relationships missing in the
model but monitored at runtime (Section 4).

v) We provide an evaluation of our approach based on
security violations extracted from real-world attacks, on
the DaCapo benchmark [44] and the iTrust electronics
health records system [45], open-source applications of
varying size, as well as an user study (Section 6).

The work is organized as follows: First, we introduce
the necessary background in Section 2, consisting of Eclipse
Secure Storage [46], our real-world running example, the
UMLsec secure dependency property, used to exemplify our
security monitoring, and an example of a security violation
with respect to UMLsec. Section 3 covers how to annotate
Java source code with security annotations corresponding to
those of UMLsec, how to monitor for violations at runtime,
and how to take countermeasures when security violations
occur. In Section 4, we present how the design-time model
can be adapted based on runtime observations. We present
our tool support for UMLsecRT in Section 5 and an evalua-
tion of the effectiveness, applicability, usefulness, and scal-
ability of UMLsecRT in Section 6. We present the practical
application of UMLsecRT to two real-world case studies, the
Eclipse Secure Storage [46] and the electronics health records
system iTrust [47], in Section 7. We discuss assumptions and
implications for working with UMLsecRT in Section 8 and
related work in Section 9. Finally, in Section 10, we conclude
and give an outlook on future work.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 3

2 BACKGROUND

A common approach for structured development and doc-
umentation of systems is model-based system engineer-
ing [48], in which models are used in each development
step. Those models are iteratively refined and detailed until
they reach a granularity that allows an implementation of
the planned system [49]. UML models are common for sys-
tem specification [50] and are also used in security analyses.
For instance, UMLsec defines a UML profile allowing de-
velopers to annotate UML models with security properties
and statically check their conciseness [8], [43]. Following
the principle of security-by-design, this procedure allows
for designing a secure software system [8], [51], [52]. Still,
the implemented system can only be considered as secure
when it is compliant with its security design [35].

In what follows, we first introduce the Eclipse Secure
Storage [46] as a security-critical running example of this
work, followed by our attacker model and design-time
security engineering based on UMLsec. With respect to
UMLsec design-time security specifications, we describe an
implementation-level security violation. Finally, we discuss
reverse engineering and co-evolution of design models with
their implementation using Triple Graph Grammars (TGG).

2.1 Running Example

Figure 2 shows the UML model of Eclipse Secure Storage [46],
used by Eclipse plugins such as the Eclipse Git client to store
confidential data like passwords.

The class SecurePreferences, at the top right of Figure 2,
represents mappings between secrets and keys to access
them internally. The field name holds the name of the context
under which a secret is stored. If a secret is requested
using the get method of this class, the secret is loaded from
the keystore and the user may have to provide a master
password to unlock the keyring. The ISecurePreferences in-
terface specifies public methods over which secret data of
plugins can be accessed. Stored secrets can be requested
using the method get and written using put. This interface
is implemented by the class SecurePreferencesWrapper which
wraps the internal instances of the class SecurePreferences
using container objects.

The two classes of the Eclipse Git implementation re-
sponsible for storing passwords are shown on the left side of
Figure 2 (Activator and EGitSecureStore). These are initialized
by Activator at application startup. For this initialization,
the SecurePreferencesFactory of the Eclipse secure storage is
used to get the default password store and to initialize the
class EGitSecureStore. This class then provides a mapping
between Git repositories and associated user names and
passwords using the ISecurePreferences.

2.2 Attacker Model

Given the complexity of software systems such as the
Eclipse IDE and practical experience, it is infeasible to com-
pletely avoid exploitable vulnerabilities in an application or
library, even with careful and sound security engineering.
However, basic security requirements must be protected
even when vulnerabilities are actively exploited.

2.2.1 Attacker Intent
We focus on attacks concerning two of the three most
important security aspects according to the CIA Triad [53]:

• Information Disclosure: The attacker’s intent is to gain
access to classified data or services of the application,
thereby violating the secrecy security property.

• Tampering with Data: The attacker’s intent is to ma-
nipulate classified application data, thereby violating
the integrity security property.

2.2.2 Attacker Capabilities
Security monitoring, as considered in UMLsecRT, is not
intended to replace security measures, but to be a last
resort to enforce fundamental information security even
when vulnerabilities are exploited. Therefore, in UMLsecRT
we consider the worst-case scenario where attackers gain
extensive application-level capabilities:

• Code Injection: Attackers are able to execute custom
Java code in the application.

• Hijack Execution Flow: Attackers are able to change
the access targets within the application, e.g., change
which method is called by an access via Java reflection.

In practice, there are likely to be two different types of
concrete attackers who could perform such illegal actions.
First, internal developers who do not intentionally perform
malicious actions, but are likely to make mistakes that could
lead to security violations, such as overlooking a security
requirement and accessing sensitive data from a part of
the system that is not supposed to do so according to
the security design. Second, malicious attackers who have
been able to execute their own code, e.g., by exploiting a
vulnerability and performing a remote code injection.

2.3 UMLsec Secure Dependency

In 2021, OWASP identified insecure design as one of the
top ten threats to web applications [6]. Structuring software
systems into layers or units of varying security criticality is a
well-known principle for secure software architectures [54]
upon which many security designs are built.

To identify threats related to the structure of the system,
threat modeling approaches such as STRIDE [15] specify
trust boundaries around critical processes and assets. Any-
thing within a trust boundary is considered secure and is
allowed to interact freely with the assets and other entities
within the trust boundary. Based on the data flows that cross
a trust boundary, security experts systematically reason
about the threats to those communications flows according
to specified threat categories and plan appropriate security
measures to prevent unauthorized access to anything inside
a trust boundary from the outside. Following the principle
of security-by-design, UMLsec allows to plan a secure de-
sign of a system based on a more detailed specification of
trust boundaries [8].

In this regard, UMLsec «secure dependency» allows de-
velopers to specify which security requirements, primarily
secrecy and integrity, apply to data stored in properties or
services offered as operations [8] and what are the trust
boundaries specific to these security requirements. In the
end, properties and operations are equivalent to processes

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

«critical»
EGitSecureStore

 + EGitSecureStore(preferences: ISecurePreferences)
 + putCredentials(uri: URIish, credentials: UserPasswordCredentials): void
 + getCredentials(uri: URIish): UserPasswordCredentials

«Interface»
ISecurePreferences

 + node(pathName: String): ISecurePreferences
 + get(key: String, def: String): String
 + put(key: String, value: String, encrypt: boolean): void

Activator

 + start(context: BundleContext): void

SecurePreferencesFactory

 + getDefault(): ISecurePreferences

«critical»
SecurePreferencesWrapper

 + container: SecurePreferencesContainer

«critical»
SecurePreferences

 + name: String

 + put(key: String, vale: String, encrypt: boolean, container: SecurePreferencesContainer): void
 + get(key: String, def: String, container: SecurePreferencesContainer): String

<<critical>>{secrecy={get(String,String,SecurePreferencesContainer):String}}

<<critical>>{secrecy={get(String,String):String, get(String,String,SecurePreferencesContainer):String}}

<<critical>>{secrecy={get(String,String):String}}

getAndStore

initGitPasswordStore

initEclipseSecureStore

 + secureStore

 1

 0..1

 + preferences
 * 0..1

 + node

 1

 0..1

getDefaultSecureStore
getAndStoreValue

<<call>>

<<call>>

<<call, secrecy>>

<<call, secrecy>>

<<call>>

Fig. 2: Eclipse Secure Storage annotated with UMLsec Secure Dependency Stereotypes.

and assets in threat modeling. In Secure Dependency, the
trust boundaries are expressed as a contract between calling
and called objects. It ensures that call dependencies respect
the security requirements of the data communicated along
them. This results in a detailed specification of trust bound-
aries that are specific to individual security requirements
and express which accessing objects are to be considered
within the trust boundary. Security engineers either plan for
an object to implement a measure that ensures the security
requirement is not violated by accesses through that object,
or the trust boundary must be extended.

We assume objects to consist of members (methods and
fields) as well as lists of member signatures with the security
property secrecy or integrity. If a member signature is not
unique, it has to be qualified with the fully qualified names
of the defining type. The following definition, adapted from
the definition of «secure dependency» in [8] addresses secrecy:

A (sub-)system fulfills Secure Dependency iff for all call-
dependencies d from a class C to a class D for all mem-
ber signatures s ∈ D.members holds that s ∈ C.secrecy
if and only if s ∈ D.secrecy. Meaning that either both,
the source and target, have to guarantee a security
property for the accessed member or none of the both.

The integrity case is entirely analogous to the secrecy
case introduced above. In both cases, security properties are
specified using the «critical» stereotype of UMLsec, which
has two lists of member signatures secrecy and integrity,
containing the members with the corresponding properties.

As in Figure 2, the class SecurePreferences is annotated
«critical» and the secrecy list holds the signature get(String,
String,SecurePreferencesContainer):String (visualized in the
comment linked to the class), all classes with a dependency
to this class that is stereotyped with «call» have to respect
this secrecy security level. This is represented by a «secrecy»
stereotype on the dependency and «critical» containing this
signature, as on the class SecurePreferencesWrapper.

As described above, UMLsec secure dependency allows
us to detail trust boundaries and plan their implementation,
focusing in particular on where security measures need to
be implemented. When implementing a system specified by
a UML model, the dependencies stereotyped with «call» are
usually implemented as method calls and field accesses.
Even if a model contains no violations, it must be guar-
anteed at runtime that the security properties specified at
design time are preserved. Furthermore, the detection of
all dependencies that may occur at runtime is statically
undecidable, e.g., due to Java reflection [24], [28], violations
caused by a shared library, or injected malicious code. In

1 public void readPassword(ISecurePreferences s) {
2 ISecurePreferences git = s.node("git/gitlab");
3 Method m = git.getClass().getMethod("get", ...);
4 m.setAccessible(true);
5 sendPassword((String) m.invoke(git));
6 }

Listing 1: Source code of a malicious application that reads
Git passwords from the Eclipse Secure Storage.

Eclipse, for example, any installed plugin can read any
password from the password store.

At runtime, we need to ensure that there are no unin-
tentional accesses that cross a trust boundary, technically
speaking, accesses to objects classified using UMLsec that
were not planned for at design time. We consider an attacker
model with two threats and an attacker who has gained
extensive capabilities in the system.

2.4 Example of a Security Violation

Listing 1 shows how a malicious plugin can exploit the
secure storage API to read stored passwords. To do so, it
needs to access the get method, which according to Figure 2
is on the secrecy security level. To avoid detection by static
analysis, it uses the Java Reflection API to access the get
method of the ISecurePreferences class. To accomplish this,
in line 2 the malware navigates to the ISecurePreferences
instance that holds the desired passwords, and then accesses
them in lines 3 through 5. First, it gets a Method object, sets
it to accessible, and finally gets the value of that method and
passes it to a sendPassword method.

2.5 Synchronization between Models and Code

Synchronizing models and code when changes are made to
either is an essential part of model-based engineering. In the
context of continuous evolution, we must ensure that the
models represent the system and we must maintain trace-
ability. Many existing approaches use graph transformations
that provide model synchronization to deal with the issues
arising from evolution [55], [56]. Similarly, we use a triple
graph grammar (TGG) [57], a rule-based transformation
that supports synchronization of changes made to both the
source and target models.

We buildup on our previous work [18], in which we ex-
tended a set of prototypical TGG rules of Leblebici et al. [58]
for transforming Java programs into UML class diagrams
to not only be able to extract UML class diagrams from
Java source code but also to synchronize changes in both

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 5

CL R

L’ C’ R’

l r

g h

m d m’

Fig. 3: Graph-theoretical concept of triple graph grammars.

Correspondence Model UML ModelMoDisco Model

mC:ClassDeclaration tC:Class

:Package :Package

++

++++

++++

eq(mC.name, tC.tName)

packagedElement ownedElements

(a) Rule for translating classes contained in packages.

(b) Rule for translating operations contained in classes.

Fig. 4: Explanatory TGG rules for translating between the
MoDisco Java metamodel and UML.

directions. We leveraged a resulting correspondence model
to dynamically trace UMLsec security properties between
models and code as part of a static verification of UMLsec
secure dependency. In doing so, we faced significant scala-
bility issues, and the security properties will not be available
at runtime as required in this work.

Before we introduce how we use TGGs, we briefly in-
troduce their theoretical background. When a TGG transfor-
mation is applied between two models, a correspondence
model is built between the two models that captures which
elements have been translated to each other. This correspon-
dence model is then used to synchronize changes in one
model by reflecting them in the other model. A set of rules
defines how the elements from the two models correspond.

Formally, as shown in Figure 3, we have a triple of
models consisting of a left model L, a right model R, and
a correspondence model C between L and R. The correspon-
dence model is connected with L and R via two structure-
preserving mappings (isomorphisms) l and r that express
how the two models correspond with each other. Thereby,
it is specified in a rule set RS how to construct l and
r. Whenever L or R is changed, which is captured as a
morphism m that expresses the change L → L’, based on
the rule set RS it is possible to calculate the morphisms d and
m’ that allow adapting the other models correspondingly to
C’ and R’. This concept can be applied for both, changes L
→ L’ as outlined but also in the other direction for a change
R → R’. For a formal proof of triple graph grammars
based on double pushout graph rewriting, please refer to
the original publication of Andy Schürr [57].

As an example of TGG rules and to intuitively explain
how exactly TGGs work, Figure 4 shows two explana-
tory TGG rules from a rule set for translating between

the MoDisco Java metamodel and UML models. The rule
in Figure 4a shows how to translate classes contained in
packages and the rule in Figure 4b shows how to translate
between methods contained in Java types to operations in
UML classifiers.

The left side of the figure shows the elements from the
MoDisco source code model and the right side the elements
from the UML model. In between is the correspondence
model of the TGG. Each rule consists of model elements
(nodes and references) that are translated by this rule or
serve as context and are expected to be translated by other
rules. Elements that are newly translated by this rule are
annotated with a ++ and highlighted in green. In black and
without annotations we show the context needed to apply
the rule. This context must be translated by other TGG rules
before this rule can be applied. There may also be conditions
on element attributes that must be met for a rule to be
applied or will hold after translation of´ newly translated
nodes, e.g., that the two class nodes in Figure 4a will have
the same name.

By matching one side of the rules to a model, e.g., a
MoDisco model that we want to translate into a UML class
diagram, we can select possible rules to translate specific
patterns. Each rule translates only a small part of the two
models. For example, the rule for translating Java methods
to UML operations will be applied to any method contained
in any Java type (AbstractTypeDeclaration). However,
this rule can only be applied if the context of the rule,
in this case the AbstractType, has been translated using
another TGG rule. In this case, the rule in Figure 4a would
be one of the rules that translates a subtype of the re-
quired AbstractTypeDeclaration. Additional rules can
translate other subtypes or combinations of Class nodes
and references. By iteratively applying these rules, we can
translate one model into another model.

If one of the two sides is changed, TGGs allow to reflect
the changes on the other side. There are two variations
to consider. First, the change may involve newly added
elements. These elements are translated by additional rule
applications as described above. Second, deletions are han-
dled by revoking the rule applications that translated these
elements, resulting in the deletion of the element created by
the rule application in the other model.

If you only consider TGG rules that perform one-to-one
translation, as shown in the example, TGGs are straight-
forward. However, it is not necessary to translate every
element contained in a model. In our rule set, we use this
to provide an abstraction from the source code. However,
due to the possible revocation of TGG rules, this can lead to
the deletion of untracked elements, e.g., all the details of the
statement level that we abstract, which cannot be recovered
by additional rule applications. Avoiding rules that lead to
information loss was one of the major adaptations we had to
make to the Leblebici et al.’s [58] rule set. When considering
security annotations, we will have similar problems due to
the fact that we only want to specify countermeasures at the
implementation level.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

TABLE 1: Mapping between UMLsec and UMLsecRT

UMLsec stereotypes UMLsecRT annotations
stereotype tagged values annotated annotation parameters

«critical» secrecy, integrity Class @Critical secrecy, integrity
«critical» secrecy Member @Secrecy
«critical» integrity Member @Integrity

3 RUNTIME ENFORCEMENT OF UMLSEC SECURE
DEPENDENCY

We propose to couple design-time security with runtime
security by introducing a notation for specifying security
properties in Java source code that can be monitored at
runtime. In addition, we discuss reverse engineering and
synchronization of UML models annotated with UMLsec
stereotypes and Java source code annotated with security
annotations. We also show how we implement countermea-
sures to mitigate security violations at runtime.

3.1 Specification of Security Properties
In UMLsecRT, we mainly work with UML models and Java
source code as well as its byte code. In the following, we
introduce annotations to support both types of artifacts.

3.1.1 Security Annotations
To annotate UML models, we use the existing UMLsec
stereotypes [8], focusing on the secure dependency property,
as exemplified in Section 2. More specifically, this includes
the stereotypes «secure dependency», «critical», and «call». In
Figure 2, we demonstrated UMLsec security annotations on
an implementation-level model. However, initial security
properties are usually specified earlier, such as on domain
models. Using inheritance relationships between UML mod-
els of different granularity, these security properties can be
propagated from very abstract models to models close to the
implementation [49].

Java annotations provide a mechanism similar to UML
profiles for annotating Java source code. Java annotations
support three different retention levels, in addition to being
available only in the source code or at compile time, they
can also be available at runtime as required by UMLsecRT.
Thus, we have defined a set of Java annotations to support
typical security properties that are aligned with the set
of annotations introduced in UMLsec, so that source code
(especially fields and methods) can be annotated.

Table 1 gives an overview of the Java annotations we
define and their relationship to the corresponding UMLsec
stereotypes. The Java annotations @Critical, @Secrecy, and
@Integrity are used semantically identical to their UMLsec
counterparts. In UMLsec’s «critical», all information about
security levels is provided within the values secrecy and
integrity. Similarly, we have defined the secrecy and integrity
parameters, which, like «critical», provide arrays of member
signatures. Typically, methods and fields are annotated by
specifying them as part of the corresponding values of
«critical». To avoid errors due to typos, and to maintain
clarity in larger classes, we also support annotating methods
and fields directly with @Secrecy and @Integrity, respectively.

In Listing 2, we have applied the UMLsecRT annota-
tions to the Java source code of the SecurePreferencesWrapper

1 @Critical(secrecy={"get(String,String,
SecurePreferencesContainer):String"})

2 public class SecurePreferencesWrapper implements
ISecurePreferences {

3 private SecurePreferences node;
4

5 @Secrecy
6 public String get(String key, String def) {
7 return node.get(key, def, container);
8 }
9 }

Listing 2: Source code excerpt from the Eclipse Secure
Storage with UMLsecRT security annotations.

:AnnotationTypeDeclaration

:Annotation

:Classifier

:Critical
++

:TypeAccess ++

:AbstractTypeDeclaration

++

++

++

++

++++ annotations

type

type

baseClassifier

Implementation-level ModelCorrespondence ModelUML Model

name == "critical"

Fig. 5: TGG Rule for translating @Critical-annotations in
an implementation-level model to «critical»-stereotype in a
UML model.

introduced in the previous section, shown in Figure 2.
The value secrecy={get(String, String):String} of «critical» is
represented by a @Secrecy annotation on the get method
in line 5 of the example. In addition, the secrecy secu-
rity property is specified for a member with the signa-
ture get(String,String,SecurePreferencesContainer):String in the
@Critical annotation on line 1, which is called on line 7.

Using the two presented mechanisms developers can
specify the same security properties on both UML models
as well as Java source code.

3.1.2 Synchronization with UML Models
To synchronize the UMLsec annotations with the UMLsecRT
annotations in the source code (see step 3 in Figure 1),
in addition to the mapping between the annotations from
Table 1, a mapping between UML elements and Java source
code as well as a synchronization mechanism are required.
To this end, we extended the rule set from our previous
work [18] to support the synchronization of the proposed
security annotations in Java source code. We successfully
applied the extended rules to the example that generated
the annotations shown in Listing 2.

Figure 5 shows a rule from our extension to our TGG-
based synchronization of models and code that allows
UMLsecRT’s security annotations to be properly supported.
We explain the extension and this rule below. The rule is
used to translate «critical» stereotypes into @Critical annota-
tions in the source code, as needed in our application sce-
nario of propagating security annotations from the design
models to the implementation. The values of this annotation
are translated using separate rules.

In the shown rule we assume as context that a UML Clas-
sifier has been translated into an AbstractTypeDeclaration, e.g.,
the UML class SecurePreferencesWrapper into a corresponding

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 7

Java class, and that an AnnotationTypeDeclaration with the
name Critical has been translated. If we can find this context
and there is an untranslated «critical» stereotype, we trans-
late it to an Annotation of type Critical on the corresponding
Class, which means we add this security annotation to the
source code. The rule can also be applied in the opposite
direction, as needed for reverse engineering UML models.

In our extension, we had to solve two challenges. First,
the aforementioned abstraction of countermeasure specifi-
cations in UML models. Since these countermeasures are
captured in parameter nodes owned by the annotation
nodes in the MoDisco model, and there are no additional
references pointing to these parameters, the only change
that would result in the loss of this information is a change
in the baseClassifier reference. If this reference was changed,
the application of the rule would be undone, resulting in the
deletion of the annotation in the source code, including all of
its parameters. The annotation itself would be recreated by
a new rule application, but the parameters would be lost.
Since editors like Papyrus that we use do not allow this
change, we can keep this rule. A more robust option would
be to split the rule into two rules, one that just translates the
annotation nodes and one that links them to the classifiers.

The second challenge is how to represent annotations
and stereotypes in the two models. The stereotypes are an
extension of the UML metamodel and can be used as typed
nodes in the TGG rules, while the Java annotation types are
part of the implementation model itself. As shown in the
rule in Figure 5, we can still create a mapping by using the
typed node in the UML model and matching the expected
name in the type declaration in the implementation-level
model. Since the UML to source code TGG rule set we are
building on already supports Java annotations for other pur-
poses, this new rule interacts with the existing rules. We had
to make sure that no two rules matching Java applications
would match at the same time. To do this, we extended the
existing rules with name checks to ensure that the name
of the AnnotationTypeDeclaration is not Critical, Secrecy, or
Integrity, which are cases that need to be translated by our
newly added rules.

3.2 Verification at Runtime
After specifying and statically verifying security properties,
e.g., using our previous work [18], [59], the next step is to
execute the annotated source code and monitor the execu-
tion for security violations (step 4 in Figure 1). To ensure
that we detect every security violation concerning «secure
dependency», we have to check all method calls and field
accesses for their compliance with the specified security
properties. The security mechanisms built into Java, such
as the Security Manager, are not sufficient to implement
UMLsecRT. They cannot be configured fine-grained enough
(only at jar file or classpath entry level) and are only ex-
ecuted when checkPermissions is explicitly called [33]. We
need to take action whenever a method is entered or exited,
or a field is accessed. According to «secure dependency», we
must consider two cases: (1) the accessed member is missing
an annotation, or (2) the accessing member is missing an
annotation. These two cases can occur at the same time.

To enable such monitoring, we use bytecode instrumen-
tation to inject security checks into the running application.

…

Control Flow Graph

call

call

2) loadCheckResults(get, preferences)

4) check(RTStack.peek(), wrapper)
RTStack.push(wrapper)

5) RTStack.pop()
6) check(RTStack.peek(), get)

RTStack.push(get)

UMLsecRT agent calls

time

call

3) check(RTStack.peek(), node)
RTStack.push(node)

EGitSecureStore
preferences:ISecurePreferences

SecurePreferencesWrapper
node(String):ISecurePreferences

SecurePreferencesContainer
wrapper(SecurePreferences):ISecurePreferences

SecurePreferencesWrapper
get(String, String):String

read

EGitSecureStore
get(URIish):UserPasswordCredentials

1) check(RTStack.peek(), get)
RTStack.push(get)

…

Fig. 6: Events monitored at runtime and pseudo code of the
check steps performed.

The security checks are injected at the beginning and end of
each method. Listing 3 shows conceptually what code needs
to be injected into methods and is explained below.

Although the JVM maintains call stacks for all
threads [60], required information such as annotated secu-
rity properties is not accessible from these stacks. For this
reason, the UMLsecRT provides a global set of stacks for call
traces, one stack per thread. The stack is retrieved when a
method is entered (line 1 of Listing 3). Whenever a method
is entered, the safe dependency conditions are checked in
line 5. To accomplish this, whenever such a relevant event
occurs, we must examine the call trace backwards and check
both that the originating method is annotated as required
and that the accessed member is annotated as requested by
the originating method. In line 2, the security annotations
of the originating member are read from the stack, and
in lines 3-4, the annotations of the currently instrumented
method are built by reading them from the bytecode and
hardcoding them into the injected code. Additionally, the
method is pushed to the stack (line 6). After all statements
of the method have been executed, but before the return is
finally initiated, the method is removed from the stack in
line 8.

1 RTStack stack = RTStackManager.getStack(curThread());
2 RTAnnotation originating = stack.peek();
3 String[] secrecy = ... // Signatures on the secrecy

level
4 RTAnnotation accessed = new RTAnnotation("Signature of

this method", secrecySet);
5 check(originating, accessed);
6 stack.push(accessed);
7 ... // Original method code
8 stack.pop();

Listing 3: Code for monitoring, injected before and after
method code.

Since field accesses are statically analyzable [33], we
check them whenever a class is loaded. Depending on the
developer’s preference, we can throw security exceptions
immediately or instrument the field access so that it is
thrown when the access is executed. An exception to this
are reflective field accesses. Here, we instrument the Java
reflection library methods to perform the necessary checks.

In Figure 6, we demonstrate security monitoring for the
execution of EGitSecureStore using Eclipse Secure Storage,
showing a control flow graph excerpt on the left and the
executed monitoring steps on the right. First, the get(URIish)

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

method of the EGitSecureStore class is called to get a pass-
word for a Git URL. This method accesses the preferences
field and calls the node method on the field to get the node
that holds the password for the requested URL. The called
node method returns a SecurePreferencesWrapper instance
by calling the wrapper method of a SecurePreferencesCon-
tainer. On the returned SecurePreferencesWrapper instance,
get(String,String):String (the implementation is shown in
Listing 2) is called to get the stored password.

If one of the validations on the right side of the figure
fails, we provide several responses to mitigate the violation.
We discuss these responses in the next section.

3.3 Countermeasures
If a violation of UMLsec’s secrecy or integrity security prop-
erty is detected, we provide four different countermeasures
to investigate the violation and prevent damage:

1) Logging: Detailed logging of all actions from potential
attacks for future analysis.

2) Exception: Throw a SecurityException when a violation is
detected.

3) Shutdown: Stop the attack by shutting down the appli-
cation when a violation is detected.

4) Default values: Return a statically defined field or
method value instead of the actual value.

5) Custom countermeasures: Replace the illegal access to the
security-critical member with a call to an operation that
implements a countermeasure.

Some countermeasures can be used as the agent’s default
response, while others must be customized for the security-
critical members. Next, we describe the countermeasures in
detail and how they can be combined by developers.
Logging: The simplest response is to log the call or access

that led to the violation and everything that happened
after that. This countermeasure can be combined with
any other countermeasure.
The log can be a classic textual log file or a sequence
diagram, such as the one generated by our automated
system adaptation described in Section 4. Logging
alone will not prevent damage, but it will allow system
developers to study the breach and adapt the system to
prevent future damage.

Exception: The first active response is oriented on how the
Java Security Manager responds to a security violation.
In the same way, we allow to throw a SecurityException.

Shutdown: The next active countermeasure is to shut down
the system and notify the system operator, i.e., provide
the logs generated by the first countermeasure.
Certainly, shutting down the entire system is unde-
sirable in many cases. Considering systems used in
critical contexts, the damage caused by a non-running
system can be quite high, and from a risk assessment
perspective, higher than a possibly limited data loss. In
this sense, an attacker could knowingly cause a secu-
rity incident to ultimately provoke a shutdown as the
ultimate goal. However, for Eclipse secure storage, in
combination with logging, this could be a valid option.

Default values: In addition to the previous countermea-
sures, to keep the system running and actively prevent
damage, we support modifying return values and field

values, and dropping write accesses in the case of a
violation. This allows us to collect more detailed logs
about the progress of the attack without revealing or
modifying sensitive information.
For example, returning null is a common response to
unforeseen or unusual situations. This prevents the
system from exposing any real data to an attacker. For
this reason, our security annotations support statically
defined early return values or field values.
While the previous countermeasures can be used as
default strategies that can be selected when starting
UMLsecRT, the active countermeasures are specific to
individual members. They can be combined with any
of the previous countermeasures to provide special
handling for specific members.

Custom countermeasure: In many cases, realistic data can-
not be specified statically, but must be generated dy-
namically to pass simple plausibility checks and not
cause exceptions to be thrown. For example, an array
must contain an expected number of entries that may
depend on runtime information. In addition, there may
be a need for additional countermeasures to put the
system in a fail-safe state and protect other parts of the
system from the ongoing attack.

Early return values are defined in both cases, static
and dynamic, by a parameter earlyReturn of @Secrecy and
@Integrity. This parameter can be any primitive type, String,
null, or the name of a parameterless method within the
class that should be called to dynamically generate a return
value and put the system in a secure state. This method
can perform any operation accessible from the scope of the
accessed member.

Since the concrete realization of early return values is ex-
tremely implementation-specific, we decided not to extend
UMLsec at the design model level, but to allow the detailing
of security annotations at the implementation level. Our
TGG synchronization rules support preserving this detail-
ing when synchronizing security properties between design
models and the implementation.

To prevent the accidental use of methods that provide
countermeasures during regular program execution, we
additionally provide @CounterMeasure: whenever a method
annotated in this way is entered, UMLsecRT prohibits this
call by returning null. We also provide static editing sup-
port for checking compatibility between the countermeasure
method’s return types and their usages.

Listing 4 exemplifies the use of calling an additional
method to put the system into a secured mode and get an
early return value: secure():String is called when a security
violation of the secrecy property of the get method occurs
at runtime. This method generates a random password that
is returned instead of the real one and calls a function se-
curedMode of a central entity. For example, the system could
implement permission checks for critical operations, which
could always be denied from now on. We allow developers
to interact with all parts of the system using arbitrary Java
source code, while still enforcing «secure dependency».

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 9

1 public class SecurePreferencesWrapper implements
ISecurePreferences {

2 @Secrecy(earlyReturn = "secure")
3 public String get(String key, String def) {
4 return node.get(key, def, container);
5 }
6

7 @CounterMeasure
8 public String secure() {
9 Application.securedMode();

10

11 StringBuilder s = new StringBuilder();
12 Random random = new SecureRandom();
13 for(int i = 0; i < 10 + random.nextInt(10); i++) {
14 s.append((char) random.nextInt(’z’ - ’a’) + ’a’);
15 }
16 return s.toString();
17 }
18 }

Listing 4: Specification of a countermeasure.

4 AUTOMATED SYSTEM ADAPTATION

After a security vulnerability is discovered, even if it has
been mitigated by UMLsecRT, the system must be improved
to reduce the attack surface with respect to that vulnerabil-
ity. Especially for systems with plugins or accessible over
the Internet, system models may not cover all possible ways
to extend or access the system. Here, the data logged by
UMLsecRT can be helpful. While a simple log file of what
happened can be difficult to understand and map to the
architecture. For specifying call sequences, UML provides
sequence diagrams [61]. Sequence diagrams allow devel-
opers to easily understand which parts of the system are
involved in a particular call sequence because the corre-
sponding model elements are used directly in the diagram.

To address these issues, we propose an automated adap-
tation of the UML system models as 5th step in Figure 1.
This automated evolution includes

1) adding missing UML elements to the system model,
2) and documenting security violations as sequence dia-

grams with references to involved UML elements.
Since generating such diagrams can be time-consuming

and requires additional libraries, such as a library that
provides the UML metamodel, UMLsecRT stores data in a
custom format at runtime that can be used later for model
customization. Figure 7 shows the format for recording
information as a class diagram.

For each application monitored by UMLsecRT, when a
security violation is detected, a Protocol is created containing
information about the date and time the violation occurred
(date) and the monitored application (application and path).
Also, the current call stack is stored in Protocol and expanded
as long as the monitored application is running.

A Call is recorded for each member on the stack or
accessed later. They are stored in the order of their addition.
To identify the member, this Call contains the signature of
the member (member), the fully qualified name of the class
defining the member (clazz), and the path from which the
class was loaded (bin). Also, each call has a unique ID and
contains the ID of the last call to the member from which the
current call originated (prevID). Finally, information about
violations or countermeasures is stored (violations).

In the remainder, we discuss how these evolution steps
can be realized using the gathered data.

Protocol

date : String

application : String

location : String

Call

clazz : String

member : String

bin : String

ID : long

prevID : long

violations : String

[0..*] calls

{ordered}

Fig. 7: Format used for recording call-sequences at runtime.

Workstation

«artifact»
EGitSecureStore.java

«critical»
EGitSecureStore

ISecurePreferences

«artifact»
ISecurePreferences.java

«artifact»

Malware

«call, secrecy»

«deploy»«deploy»«deploy»

«manifest»«manifest»

«call»

«manifest»

illegalAccess

«call»

getAndStore

«call, secrecy»

141.26.64.113

MaliciousPlugin.jar

«manifest»

«artifact»
Send.class

Send

«deploy»

«call»

Fig. 8: Deployment and manifestation of classes with adap-
tions by UMLsecRT, showing unknown classes dynamically
loaded at runtime.

4.1 Addition of missing Elements
Figure 8 shows a deployment diagram from the system
model of the running example. The shapes with white back-
ground resemble the elements from the (reverse-engineered)
model. At the top is the call between the class EGitSe-
cureStore and the interface ISecurePreferences from Figure 2.
Below these two types we can see on which artifacts the
types are deployed and on which execution environment
they are manifested. The gray shapes on the right were
automatically added by UMLsecRT. These shapes show the
actions of the malware introduced in Listing 1 that were
not considered by the developers, e.g. which classes the
unknown class Malware interacts with and what was the
security-violating interaction.

While in the shown example the unknown class is clearly
named Malware, in the real world the names would be
obfuscated or equal to the names of known and expected
classes. To identify unknown and known items, comparing
their fully qualified names is not sufficient [62]. A Java class
that has the same fully qualified name as a UML classifier
can still be injected by an attacker using a weakness in
the implementation. Here, we improve the identification of
elements by considering their manifestation dependencies
specified in deployment diagrams such as Figure 8.

The generated diagram not only explicitly shows which
classes the unknown class Malware interacts with, but also
that it was loaded from a remote server. In addition to com-
paring fully qualified names, we compare the manifestation
of UML elements in artifacts with the protection domains
of Java classes. A protection domain contains information
about where the class loader loaded the class from. This
location must match the manifestation in the UML model.
Based on the protocol through which a class was loaded,
such as a file or a socket, we can even verify that the
deployment of the artifact manifesting a classifier is the
expected one.

4.2 Documentation of Security Violations
To understand an attack, it is not only necessary to show
which method call or field access leads to a security vi-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

 : Malware s : SecurePreferencesWrapper

 get(key: String, def: String):String

 earlyStartup():void

secret:String

 secure():String

secret:String
Violation of Secrecy

CounterMeasure

 readPassword(s: ISecurePreferences):void

 sendPassword(secret: String):void

Fig. 9: Sequence diagram automatically generated by
UMLsecRT for visualizing an observed security violation.

olation and where the injected code comes from, but it
is of particular interest to show the sequence of actions
performed by the attacker.

Figure 9 is a sequence diagram generated by UMLsecRT
while monitoring the execution of the running example
(see Listing 1). It outlines a call sequence that leads to
a security violation and the mitigation that is performed
against it. The source of the security violation is the call to
the get(String,String) method, commented in the diagram as
Violation of Secrecy, which was called by the readPassword
method. While this call is obfuscated in the implementation
using Java reflection, we can see the effective calls in the
generated sequence diagrams. Which countermeasure was
executed is also shown in a comment. In this case, the
secure method was called as specified in Listing 4. After the
violating call, the attacker called sendPassword(String), but
due to the countermeasure, not with the secret value. For
efficiency, we do not keep track of all the methods that have
already returned, but starting with the violation, all future
accesses are recorded and visualized. In this case, it is just
another call to sendPassword.

To generate sequence diagrams, we need to translate
our internal stack structure, as shown in Figure 6, into a
sequence diagram. To do this, UMLsecRT translates each
method call into a synchronous message in the sequence
diagram. For each field accessed, a lifeline is generated,
e.g., the lifeline s of type SecurePreferencesWrapper in Fig-
ure 9. UMLsecRT also creates lifelines for classes when static
members of those classes are accessed, or UMLsecRT cannot
determine the variable on which the method is called. While
we need to create a message from a start node for the
first element on the stack, for all other elements we always
have a predecessor from which the corresponding message
originates and to which the return message goes. Before the
return message is added to the diagram, all predecessors
are added to the diagram. Since the list of predecessors
is ordered, we automatically get the correct sequence of
messages. Algorithm 1 shows this procedure in detail.

As input, we take a Protocol conforming to the specifi-
cation in Figure 7 and return a UML Interaction containing
the sequence diagram. First we initialize three maps in lines
1–3. The first map, names2lifelines, maps pairs of domain
and class names to lifelines. The second map provides direct
access to a previously processed Call using its ID, and the
third map provides access to the return message generated
for a Call using its ID. We then initialize a new Interaction in
line 4.

Input : Protocol P
Output: Interaction I

1 names2lifelines := Map<(String,String),Lifeline>→new;
2 ids2calls := Map<long,Call>→new;
3 ids2replies := Map<long,Message>→new;

4 I := Interaction→new;

5 foreach call ∈ P.calls do
6 rhs := names2lifeline→getOrCreate(call.bin, call.clazz);
7 prevCall := ids2calls→get(call.prevID);

8 if prevCall = null then
9 kind := ASYNCH_CALL_LITERAL;

10 else
11 lhs := names2lifeline→get(prevCall.bin, prevCall.clazz);
12 if getNamme(call.member) = call.clazz then
13 kind := CREATE_MESSAGE_LITERAL;
14 else
15 kind := SYNCH_CALL_LITERAL;
16 end
17 end

18 message := createMessage(lhs,rhs,call.member,call.violations,kind);
19 if kind = SYNCH_CALL_LITERAL then
20 reply := createReply(lhs,rhs,call.member);
21 createBehaviorExecutionSpecification(message,reply);
22 messages→put(call.ID,reply);
23 end

24 successor := ids2replies→get(call.prevID);
25 if successor ̸= null then
26 message→getOccurrenceSpec()→setToAfter(successor);
27 end

28 ids2calls→put(call.ID, call);
29 end
30 return I;
Algorithm 1: Generate a sequence diagram from the
protocol written by UMLsecRT.

Next, we iterate over all the calls in order of addition,
starting with the first added call. In each iteration, we first
look in the map names2lifelines to check if we already created
a lifeline in the interaction I for the current call or not.
We get the lifeline if it already exists or create a new one
otherwise. Then we look up if we already translated the
predecessor of the current call of this iteration. This should
always return a Call, except for the first recorded call, which
has no predecessor.

In lines 8–17 we determine the appropriate UML mes-
sage type to represent the current call and, if appropriate,
the lifeline from which the current call originates. If we are
processing the first call in the call sequence, prevCall is not
defined and we will create an asynchronous message. There
is also no lifeline from which this message will originate.
Otherwise, we get the lifeline for the source of the call in
line 9. Next, we distinguish between calls to constructors
and calls to methods or fields. We assume that a constructor
has the same name as the class in which it is defined. We will
create a create message for constructors and a synchronous
message for all other members.

In line 18, the message representing the call is created
using the previously determined information. Note that
UML always treats a message whose source is not set as a
found message, and no special treatment is required for the
initial call. Next, in lines 19–23, we create the reply messages
for synchronous messages as well as the highlighting for
active times of a lane. We also add the response message to
the map containing all responses.

Finally, in lines 24 through 27, we specify the order of
the messages. If no explicit order is given, the messages are
added to the end of the lifeline. However, if a message has
been called within the active time of another message, we

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 11

Fig. 10: Structure of the implementation of UMLsecRT.

need to adjust this order. To do this, we retrieve the return
message of the predecessor in line 24 and move the message
created in this iteration before the retrieved reply. If there
was no reply message for the predecessor, there is no need to
adjust the order. Finally, at the end of each iteration, we add
the call to the map of calls already processed (ids2calls). After
processing all calls in the protocol, we return the generated
interaction.

5 TOOL SUPPORT

To evaluate UMLsecRT, we have implemented prototypical
tool support for UMLsecRT. The generation of monitored
call sequences as sequence diagrams and missing model
elements that appear at runtime are also supported. In
addition, we show how synchronization between source
code and UML models can be achieved.

Figure 10 shows in detail the structure of our imple-
mentation of UMLsecRT as introduced in Figure 1. In both
figures, Figure 1 and Figure 10, we use the same number
labels for the respective steps. In the following, we explain
the main features of the implementation in the order of
the number labels. The implementation itself can be down-
loaded from [63].

5.1 Java Annotations and IDE Support
We have implemented the source code annotations specified
in Section 3 as Java annotations and provide them to devel-
opers in an Eclipse plugin and as a Java library [63]. To
further assist developers, we have also implemented a vali-
dation plugin for the Eclipse IDE [64] to validate UMLsecRT
annotations. This validation ensures that the types specified
in early return values are compatible with the annotated
fields and return types of annotated methods. We cover
not only statically specified early return values, but also the
return types of methods called in case of security violations.

5.2 Synchronization of UML Models with Source Code
In steps 1 and 3 of Figure 10, we may need to reverse-
engineer UML diagrams from source code and then keep
both, including UMLsecRT annotations, in sync. To address
this issue, we use a model transformation approach based
on triple graph grammars (TGG) [57]. In particular, we use
the graph transformation tool eMoflon [58], [65].

The prototypical rules of Leblebici et al. that we extended
were written by them to evaluate an eMoflon feature that
allows to recreate a correspondence model between two
existing models [56]. In our previous work [18], we imple-
mented the synchronization of model and source code by in-
corporating the TGG rules and improving their quality and

Listing 5: TGG rule in the DSL of eMoflon
1 # using modisco . uml . *
2 # using AttrCondDefLibrary . *
3

4 # r u l e C r i t i c a l S e c u r i t y A n n o a t i o n #with modisco . uml
5

6 # source {
7 s u b j e c t : AbstractTypeDeclarat ion {
8 ++ -annotations-> annotations
9 }

10 ++ annotation : Annotation {
11 ++ -type-> access
12 }
13 ++ access : TypeAccess {
14 ++ -type-> type
15 }
16 type : AnnotationTypeDeclaration
17 }
18 # t a r g e t {
19 ++ stereotype : Critical {
20 ++ -baseClassifier-> classifier
21 }
22 c l a s s i f i e r : C l a s s i f i e r
23 }
24 # correspondence {
25 s2c : ASTNode2Element {
26 # src −> s u b j e c t
27 # trg −> c l a s s i f i e r
28 }
29 ++ c2c :ASTNode2Element {
30 #src->annotation
31 #trg->stereotype
32 }
33 }
34 # a t t r i b u t e C o n d i t i o n s {
35 eq (" c r i t i c a l " , type . name)
36 }

support for synchronization of changes. For the needs of this
work, we finally extended them with support for UMLsecRT
annotations, call dependencies, and deployments.

Altogether, our rule set in eMoflon consists of 92 TGG
rules. Listing 5 shows the conceptional TGG rule from
Figure 5 implemented in the syntax of eMoflon. The el-
ements from the two models are expressed in #source
and #target blocks using an intuitive object:type notion.
As in the figures, additions are indicated by a ++ and also
highlighted in green by the eMoflon editor. In contrast to the
visual specification, eMoflon needs typed correspondences
that are defined in a separate eMoflon file. We import
this file as modisco.uml and explicitly state that this
rule uses the correspondences specified in modisco.uml.
The correspondences themselves are specified in the rules
in the #correspondence block. Simple conditions over
attributes are expressed in the #attributeConditions
block. In the example, we use the equals function eq that
we imported from the AttrCondDefLibrary of eMoflon.
Custom functions can be defined in separate libraries.

To synchronize using eMoflon, after developers have
annotated the model or source code, we need a UML model,
a model of the source code, and any changes applied to
both. As source code model we use the MoDisco [66], [67]
Java metamodel and the MoDisco tooling for parsing or gen-
erating source code. To determine the changes in the UML
model, the prototype listens directly to model change events
generated by a modeling tool, such as Papyrus [68], [69].
Papyrus is a powerful UML editor that directly supports
the UMLsec profile if CARiSMA, the current tool support
for UMLsec, is installed [70].

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

RTStackManager

 pop()
 getStack(): RTStack

RTStack

 push(RTAnnotation)
 + pop()

RTAgent

 PRINT: boolean [1]
 TRACE: boolean [1]
 OUT: File [1]

 premain()
 agentmain()

RTStackPrintable

 printViolation(String)

RTTransformer

 transform(Class)
 addSecurityCheck(CtBehavior, CtClass)

RTFieldAccessCheck

 edit(MethodCall)
 edit(FieldAccess)

RTAnnotation

 integrity: String [*]
 secrecy: String [*]
 signature: String [1]
 clazz: Class [1]
 ownId: long [1]
 prevId: long [1]

«use»

«use»

«use» «use»

 stacks 1

 *

 elements 1

 *

«use»

«use»

A
g
e
n
t

C
o
d
e

R
u
n
-t

im
e
 S

u
p

p
o
rt

 C
la

ss
e
s

Fig. 11: Class structure of the UMLsecRT agent.

5.3 Validation at Runtime and Countermeasures

After a developer annotated the UML model or source
code with the UMLsecRT annotations and synchronized the
annotations as described above, he executes the program
and monitors it using UMLsecRT (step 4 in Figure 10).

We implement this security monitoring by instrumenting
the compiled code using Javassist, a framework for bytecode
manipulation of Java programs [27], [71]. Instrumentation
needs to take place at runtime because it is not foreseeable
which classes will be loaded, e.g., due to dynamic class
loading. We encapsulated the runtime part of UMLsecRT
into a Java agent which is called before the main method
of a Java program is called. The bytecode instrumentation
provided by our agent is triggered every time a class is
loaded and instruments appropriate code to conduct the
secure dependency check at runtime.

Figure 11 shows the class architecture of the UMLsecRT
agent. The implementation consists of two types of classes,
runtime support classes that are used in the instrumented
bytecode as shown in Listing 3, and the agent code that
implements the instrumentation of the application bytecode.

To implement the monitoring in the RTTransformer and
RTFieldAccessCheck classes, we add the security checks to the
bytecode of the application. To get access to the running sys-
tem, we implemented a Java agent (RTAgent), which can be
invoked via the javaagent command line option of the JVM
and is documented in the package java.lang.instrument [72].

The JVM calls our agent whenever a class is loaded.
UMLsecRT then transforms the bytecode of the class by
injecting the code to keep track of the call stack (RTTrans-
former), issuing secure dependency checks at appropriate
times (as shown in Figure 6 and Listing 3), and also gener-
ating additional report data to implement model adaptation
(step 5). A static check for potential malicious field accesses
is also performed when the class is loaded (RTFieldAccess-
Check). Since the agent is also called on dynamically loaded
classes, the analysis we provide is a hybrid analysis that
does not depend on the local availability of all classes.
Which of the discussed countermeasures should be executed
when a security violation is detected is specified as an
argument when the application is launched with the agent.

A security threat is that attackers can inspect the systems
and add UMLsecRT annotations to their malicious code
to avoid detection. This problem can be solved by adding
cryptographic signatures to the annotations. If UMLsecRT
annotations are used only as an internal security mecha-
nism, commits containing new security annotations can only

be accepted by developers with sufficient privileges. Since
the signature check only needs to be performed when a class
is loaded, this is a static overhead and has relatively little
impact on long-running programs.

5.4 Detecting System Evolution Automatically

While we support synchronization of model and code, there
may be associations between the model and source code
that are not yet covered and cannot be statically detected.
This is especially true for dynamic behavior introduced
by libraries and reflective calls. When monitoring program
execution, our implementation of UMLsecRT keeps track of
every method that has been entered and not yet exited.

The prototype facilitates the graphical representation of
the observed call flows by creating sequence diagrams (step
5 of Figure 10). Since our tool can keep track of every
method and field that is accessed, we can continuously
check if a call edge detected in the monitoring has corre-
sponding elements in the model. If not, the tool can feed this
information into the model by adding appropriate elements.

6 EVALUATION

We evaluate the applicability of UMLsecRT and its tool
support by considering five research questions:
RQ1–Effectiveness: Can we detect real-world security vio-

lations using UMLsecRT?
RQ2–Applicability: Can we monitor real-world Java pro-

grams with a reasonable runtime overhead?
RQ3–Overhead: What is the monitoring overhead com-

pared to other monitors, and what influences it?
RQ4–Usefulness: How useful are the countermeasures and

do the adapted UML models facilitate investigating
security violations?

RQ5–Scalability: How does the TGG-based synchroniza-
tion between models and code scale?

In the following, we present the research questions in
detail, the methodology, and the results of the evaluation.
We conducted the experiments on a system equipped with
an Intel i5-6200U CPU, 8 GB RAM, and running Oracle JDK
8 on Ubuntu 20.04 LTS. All evaluation data and implemen-
tations are available in our replication package [63].

6.1 RQ1–Effectiveness of the Security Monitor

We study the effectiveness of UMLsecRT for detecting vul-
nerabilities and compare it to other security monitors.

6.1.1 Setup
For this evaluation, we studied the causes of real-world se-
curity violations related to the secrecy and integrity proper-
ties of «secure dependency», reproduced them, and evaluated
the mitigation of these violations.

Common software weaknesses are collected in the Com-
mon Weakness Enumeration (CWE) using a unique ID for
each entry [73]. However, the presence of a vulnerability
that is an instance of a weakness does not imply that the vul-
nerability can be actively used to perform malicious actions.
Nevertheless, vulnerabilities in software should be detected
and fixed, which is not the scope of our work, but to prevent

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 13

TABLE 2: Considered CWEs and their mitigations by UMLsecRT.

CWE description & mitigation

200 – Exposure of Sensitive Information UMLsecRT prevents the exposure information by checking every access to data declared as sensitive.

209 – Sensitive Information in Error Message If @Secrey is required from print methods of exceptions, calls to those not compliant are prevented.

226 – Sensitive Information Uncleared in Resource UMLsecRT prevents illegal access to fields declared as sensitive.

327 – Broken Cryptography If required security guarantees of a hash or encryption/decryption function have been removed, e.g.,
328 – Reversible One-Way Hash due to an update of a library, UMLsecRT prevents calls to those.

470 – Unsafe Reflection UMLsec Checks Accesses at runtime and Prevents Forbidden Ones.

481 – Assigning instead of Comparing All assignments from locations not having the required guarantees are prevented by UMLsecRT.

486 – Comparison of Classes by Name As UMLsecRT does not rely on names, malicious classes loaded due to comparison by name cannot
perform accesses they do not have the rights for.

498 – Clonable Class Containing Sensitive Data While usually security checks are implemented in constructors, we check all accesses to sensitive data.

499 – Serializable Class Containing Sensitive Data As every access is checked, no sensitive data can be accessed during a malicious serialization.

502 – Deserialization of Untrusted Data Methods of injected malicious classes can only perform accesses they have the rights to.

586 – Explicit Call to Finalize As explicit finalize calls threat integrity, only calls from methods guaranteeing @Integrity are enforced.

807 – Reliance on Untrusted Inputs in a Security Decision UMLsecRT prevents unauthorized modification of values for which @Integrity has to be preserved.

829 – Functionality from Untrusted Control Sphere Also for external functionality, compliance with specified security properties is enforced at runtime.

the running system from being harmed if vulnerabilities
are exploited. In Table 2 we briefly summarize the CWEs
considered in our evaluation and how they are mitigated by
UMLsecRT when instances of them are exploited.

A common benchmark for static weakness detection
approaches is the Juliet test suite, which was created to
study their effectiveness and accuracy. For many CWEs,
the Juliet test suite provides a database of good and bad
code examples [74], [75]. Unfortunately, it does not provide
examples of how to exploit the weaknesses maliciously.
Such an exploit is required to violate «secure dependency»
at runtime and create a situation where a security monitor
needs to intervene. However, the Juliet test suite provides a
good basis for systematically implementing such cases.

For example, CWE470 – Unsafe Reflection states that using
the Java reflection API to load classes based on external data
is dangerous. To statically detect this vulnerability, you must
determine whether the values passed to the reflection API
(such as the name of a class to load) are generated from
external data. A small change in how the name of a class
is passed to the API can have a huge impact on detection,
and collecting such different variations is the purpose of the
Juliet test suite. While detecting all these different variations
of a single weakness is challenging statically, concrete values
can be inspected at runtime. Because the Juliet test suite is
designed for static analysis tools, the examples for CWE470
end as soon as a class is loaded based on external data. The
same is true for the other CWEs considered in Juliet.

At runtime, we cannot change the underlying imple-
mentation of a system to eliminate weaknesses, but we
must mitigate the exploits. Since we can perform checks
whenever a class is loaded, we need to evaluate not whether
we can detect the loading of a class, but whether we can
detect malicious actions that a class performs. Here we have
three possibilities to consider: malicious method calls, as
well as read and write accesses to fields. While all three are
possible for CWE470, this is not the case for other CWEs. For
example, write accesses cannot be used to expose sensitive
data as considered in CWE200.

Therefore, based on the Juliet test suite and our re-

search on CWEs, we created executable test programs to
investigate the effectiveness of runtime monitoring. To do
this, we iterated through all of the Juliet test programs
and attempted to build an exploit that violates a security
property of «secure dependency». We did this by directly
annotating the source code with the security annotations,
bypassing the model level. In each case where we success-
fully built an exploit, we consider, similar to Juliet, two
types of test programs, positive and negative test programs.
Each positive test program contains an exploit that must
be detected during runtime monitoring. In summary, we
have built test programs based on the 13 CWEs shown in
Table 2. For example, the violation shown in Listing 1 of
the running example is an instance of CWE829 that uses
CWE470 to perform an illegal method call that results in
data disclosure (CWE200). According to Listing 4, this is
mitigated by calling a countermeasure. In this experiment,
we throw a SecurityException whenever a «secure dependency»
violation is detected by UMLsecRT. In Table 3, this case is
used to test the secrecy case of a method call for the violation
in the first row. Each negative test program corresponds to a
positive test program in that it covers the same language
construct but does not contain a security violation, e.g.,
because the security annotations are consistent.

All of the test programs are about the size of this example
and, where possible, have been created for secrecy and
integrity cases of field accesses and method calls. Our test
programs cover calls to and from external libraries, reflec-
tive access to fields and methods, reflective instantiation of
objects, code injections into a Javascript engine, and a de-
serialization attack. In total, we specified 13 different types
of test programs with 37 expected security violations. For
each expected violation, we have an additional test program
where the same action takes place but no violation occurs.
The total number of test programs is 74, and our replication
package contains all of them [63]. Table 3 summarizes the
test programs and which CWEs they address.

We tried to compare UMLsecRT with a variety of se-
curity monitors and we were able to implement «secure
dependency» using the Java Security Manager and Larva [76].

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

1 public String get(String key, String def) {
2 System.getSecurityManager().checkPermission(new

RuntimePermission("get(String,String)"));
3 ... // Unchanged implementation of the method
4 }

Listing 6: Implementation of the test programs using the
Java Security Manager.

1 grant codeBase "file:${user.dir}/bin/-" {
2 permission java.lang.RuntimePermission "get(String,

String)";
3 };

Listing 7: Example policy for the Java Security Manager.

In the following, we report on how we implemented the
security checks and the problems we encountered.

Java Security Manager: To detect the security viola-
tions, we had to add explicit calls to its checkPermissions
method to the test programs, in addition to the security
annotations. In Listing 6, we show how we implemented
the security check for the example from Listing 2.

At the beginning of each method for which a security
property has been specified within the security annotations,
we have added a call to the checkPermissions method with
a RuntimePermission parameter. Similar to the security an-
notations, we specify the method signature for which a
security property has been specified as a unique identifier
in the RuntimePermission. We can then refer to the signature
in the policy file of the Security Manager to specify who
should have access to the corresponding method. If access
is granted, the checkPermissions method does nothing, other-
wise it throws a java.security.AccessControlException.

In policy files, we can grant permissions to code bases,
which are classpath folders or jar files. Listing 7 shows
a snippet of the policy file for the example. We grant
permission for the signature get(String,String) recursively
on the entire classpath entry bin, assuming that malicious
classes are not part of the application and are loaded from
somewhere else. This means that any class located in the
bin folder is allowed to call the method get(String,String). In
the experiments, we put the malicious implementations in a
separate classpath folder bin-exploit.

BeepBeep: Under this name, two stream processing ap-
proaches have been developed that have been used to verify
security properties at runtime [31]. We have tried to express
«secure dependency» in both.

The older version of BeepBeep uses LTL-FO+ [77] linear
temporal logic to express constraints that can be monitored.
A script on the BeepBeep website [78] generates AspectJ
code from such a specification, allowing BeepBeep to mon-
itor the constraints at runtime. The constraint is expressed
on an XML representation of the call stack, which consists
of call entries that have a method tag containing the name of
the method that was called. Accordingly, we have expressed
«secure dependency» in LTL-FO+, using some placeholders.

G(∀/call/methodm1 : ∀/call/methodm2 :

X((m2 ∈ secrecy(m2) ∧m2 ∈ secrecy(m2))

∨(m2 /∈ secrecy(m2) ∧m2 /∈ secrecy(m2))))

(1)

Since we need to check all pairs of methods, we have
a global constraint in the call tree that must hold on all
method calls m1 and implies a constraint to check on every
next method call m2. The constraint is expressed on an XML
representation of the call stack, which consists of call entries
that have a method tag containing the name of the method
that was called. Accordingly, we have expressed «secure
dependency» in LTL-FO+, using some place holders. Due to
the bi-implication of «secure dependency», we must always
consider the pair and cannot check on m1 only in advance.
Therefore, we have to check on every next method call m2

that the «secure dependency» property must hold, i.e., m2 is at
the security level of secrecy for either m1 and m2 or neither
of them. We express this condition using a helper function
secrecy, which for a method name returns the method names
that are on the secrecy security level.

Practically, we faced two problems that prevented the
implementation of this constraint. First, it is not possible to
implement the required helper function secrecy in BeepBeep
because there is no way to inject additional information into
the constraints. One would have to extend the BeepBeep call
stack with this information and add set logic to LTL-FO+, or
find a way to manipulate each AspectJ file after generating a
stub. Second, all methods that need to have this check added
must be explicitly declared. While this is a huge overhead,
it is possible for the methods to be known at design time
and could be automated. However, as discussed above, to
ensure that unknown code, e.g., injected code or code from
libraries, does not violate the security level, the check must
also be run on them. Since LTL-FO+ only supports forward
logic and we cannot name these methods in advance, this
cannot be expressed using BeepBeep.

The newer BeepBeep3 has been used explicitly to verify
security properties at runtime [31]. BeepBeep3 is a pure
stream processing approach that allows the specification of
processing pipelines by wiring different processing nodes.
When used for security monitoring, the authors manually
implemented aspects using AspectJ that use this stream
processing for verifying security properties. If we wanted
to use BeepBeep3, we would also have to implement our
own aspects, resulting in the same problems as for Beep-
Beep, or we could inject the BeepBeep3 processing pipeline
using the code instrumentation of UMLsecRT. In the same
injected implementation, we have to manually extract the
information about the annotations to pass it to a BeepBeep3
stream processing network. Considering the stream process-
ing itself, there is currently no node that allows us to express
the UMLsec Secure Dependency property, and we would
have to implement a custom node to do so. What we could
express using the nodes of BeepBeep3 is the handling of the
call stack as demonstrated by Boussaha et al. [31]. However,
they implemented this in a processing pipeline containing
9 processing nodes with complex wiring, while the same
logic is implemented in 3 lines of code (Stack.get/push/pop) in
the code injected by UMLsecRT. In summary, we could use
BeepBeep3 in the code we inject using UMLsecRT to express
«secure dependency» in combination with custom code, but it
would just add more overhead. Therefore, we decided not
to perform this experiment with BeepBeep3.

Larva: The Larva monitor [76] allows to express a state
machine that models valid and invalid states, where the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 15

ok

(1) exitMethod \ \ stack.pop();

(3) enterMethod \ \ stack.push(id);

bad
(2) enterMethod \ !checkSecureDependency(stack.peek(), id)

Fig. 12: Larva state machine for monitoring compliance with
«secure dependency» for the secrecy case.

transitions are triggered by the execution of methods of the
monitored program. Furthermore, Larva allows to express
variables that could be used to hold the last method call to
compare its security properties with the next one. Condi-
tions can be expressed for concrete objects. However, since
«secure dependency» expresses constraints on the structure
of a software system and not on concrete object instances,
which are application specific and must be known by the
one specifying the security constraint, we cannot use this
to express Secure Dependency. Furthermore, like BeepBeep,
Larva requires explicit specification of the methods that
can trigger a state change. Also, Larva does not allow
direct access to the required security annotations, although
method triggers can be combined with custom Java code,
but the method object itself is not accessible.

By generating configurations for all methods included in
the implementation of the system, and using an external
specification of security annotations in a JSON file that
maps method names to security annotations, combined with
custom Java functions injected into Larva, we were able to
specify the Larva runtime monitor as shown in Figure 12.
As for UMLsecRT, we will only explain the case of secrecy.
We defined two variables, stack and secrecyMap, which hold
the current execution stack and a map with all secrecy
annotations for the methods of the implementation, which
is initialized at the start of Larva by reading the values
from a JSON file. As in UMLsecRT, we push a method
onto the stack when it is executed and remove it when it
returns, represented as enterMethod and exitMethod events
in the state machine. Here we had to explicitly specify
which method triggers which event for each method of the
implementation. We also created a new parameter in these
events that is initialized to a method name when the method
is entered, to make this information accessible. When a
enterMethod event occurs, we first check if Secure Depen-
dency is fulfilled, using the same Java implementation as in
UMLsecRT, which is provided as a checkSecureDependency
method to the state machine that used the two method
IDs to get the corresponding annotations to compare them.
If this is not satisfied, the bad state is entered and Larva
allows execution of arbitrary Java source code. Otherwise,
monitoring and system execution continue.

In summary, this implementation allows us to moni-
tor Secure Dependency for method calls, but not for field
accesses. Since the Secure Dependency check is based on
method names, unlike UMLsecRT, which works on concrete
method and class objects, this monitor is vulnerable to the
Comparison by Name vulnerability (CWE486).

6.1.2 Results
While the specification of the test programs was straight-
forward for UMLsecRT, this was more challenging for the

Java Security Manager and Larva. In order to run the test
cases, we had to add explicit calls to checkPermissions for
the Java Security Manager, and we had to extract the test
logic into a wrapper method for Larva, since we found that
it did not allow the main method to be considered. While
UMLsecRT and Larva support different types of security
properties, the standard Java Security Manager does not.
Therefore, we implemented the security checks using the
Java Security Manager without distinguishing between the
different security properties.

The results of the experiment are shown in Table 3. A
checkmark indicates that the vulnerability was successfully
mitigated, and a cross indicates that the vulnerability could
not be mitigated. For some test programs, not all cases make
sense, e.g., CWE209 – Sensitive Information in Error Message
cannot lead to an integrity violation. UMLsecRT detected
all the expected security violations without a single false
positive (100% precision and recall). Also, none of the other
security monitors detected any false positives, but they
detected varying numbers of true positives, resulting in a
recall of 30% for Java Security Manager and 27% for Larva.
We discuss these results in detail below.

A general limitation of the Java Security Manager and
Larva that we observed is that it is not possible to check field
accesses. Accordingly, we consider all test programs with
forbidden field accesses to have failed. An exception to this
is reflective field access for the Java Security Manager, for
which it provides the ability to check whether the use of Java
reflection is allowed for the location from which the class
was loaded, but not to check against the security property
of the field. However, since some sort of security check can
be expressed, we consider this a partial success. The same is
true for method calls executed through Java reflection.

Since a primary goal of «secure dependency» is not only
to protect against attacks, but also to mitigate security
violations caused by bugs within the implementation, it is
essential to consider illegal accesses on the method level.
While UMLsecRT and Larva support this granularity, the
granularity of the Java Security Manager does not allow us
to specify security checks within a single classpath entry.

Finally, the Java Security Manager only allows us to
check the invocation of methods under our control, as devel-
opers must explicitly call checkPermission, but not whether
an external method we call provides the expected security
properties. Similarly, in Larva, the methods to be included
in the security checks must be explicitly defined, which
prevents checking accesses involving unknown methods,
making it impossible to check injected code or calls from
external plugins. Since the library APIs used by the system
are known to the developers, they can be added to the Larva
configuration. However, they are not automatically updated
when a library’s security guarantees change, which leads us
to consider this case a partial success.

In summary, while the Java Security Manager can be
effectively used to check incoming method accesses that
originate from classes stored on a different classpath than
the code to be protected, it does not provide sufficient
granularity and expressiveness to enforce UMLsec security
policies at runtime. While Larva allows to work on the
required granularity, it is not possible to specify all the
unknowns upfront as it would be necessary in Larva. In

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

TABLE 3: Effectiveness of UMLsecRT and the Java Security Manager: ✓ – mitigated, (✓) – partly mitigated, × – not
mitigated, N/A – not applicable

UMLsecRT Security Manager Larva

Field Method Field Method Field Method

Kind of Action Executed in the Test Programs CWEs

Se
cr

ec
y

In
te

gr
it

y

Se
cr

ec
y

In
te

gr
it

y

Se
cr

ec
y

In
te

gr
it

y

Se
cr

ec
y/

In
te

gr
it

y

Se
cr

ec
y

In
te

gr
it

y

Se
cr

ec
y

In
te

gr
it

y

1 A plugin accesses critical members of the host 200, 226, 486, 807, 829 ✓ ✓ ✓ ✓ × × ✓ × × × ×
2 Internal bug: Security properties of source violated 200, 807 ✓ ✓ ✓ ✓ × × × × × ✓ ✓
3 Internal bug: Security properties of target violated 200, 807 ✓ ✓ ✓ ✓ × × × × × ✓ ✓
4 Accidental assignment to field but only read rights 481, 807 N/A ✓ N/A N/A N/A × × N/A × N/A N/A
5 Dynamic loaded class accesses data 200, 226, 486, 807, 829 ✓ ✓ ✓ ✓ × × ✓ × × × ×
6 Injected JavaScript code into the Rhino engine 200, 226, 807, 829 ✓ ✓ ✓ ✓ × × ✓ × × × ×
7 Call printstacktrace of sensitive exception 200, 209 N/A N/A ✓ N/A N/A N/A ✓ N/A N/A ✓ N/A
8 Reflective access to critical members 200, 226, 470, 807 ✓ ✓ ✓ ✓ (✓) (✓) (✓) × × ✓ ✓
9 Call to finalize with insufficient privileges 586 N/A N/A N/A ✓ N/A N/A (✓) N/A N/A N/A ✓

10 Cloning of a class containing sensitive data 200, 498 ✓ N/A N/A N/A × N/A N/A × N/A N/A N/A
11 Serialization of class containing sensitive data 200, 499 ✓ N/A N/A N/A × N/A N/A × N/A N/A N/A
12 Replacing class at deserialization 200, 502, 807, 829 ✓ ✓ ✓ ✓ × × ✓ × × × ×
13 Unsecure method/field in new library version 200, 326, 327, 328, 807 ✓ ✓ ✓ ✓ × × × × × (✓) (✓)

contrast, the proposed security policies can be effectively
enforced at runtime using UMLsecRT. Also, if the software
system has been developed using UMLsec, there is no
additional effort involved in enforcing the UMLsec security
requirements, solving one of the main practical problems of
the Java Security Manager [34].

6.2 RQ2–Applicability of the Security Monitor
To use UMLsecRT in practice, it is essential to be able
to monitor real-world programs with reasonable overhead
and without encountering problems, e.g., due to excep-
tions. Therefore, the second research question confronts
UMLsecRT with different real-world applications. More
specifically, we want to determine which part of UMLsecRT
is responsible for monitoring overhead and to what extent,
and which program constructs are problematic to monitor.

6.2.1 Setup
To consider real-world programs with realistic program
executions, we applied the monitoring component of
UMLsecRT to the DaCapo benchmark suite [44]. DaCapo
has been actively maintained and supported by the industry
since 2006. In version 9.12, DaCapo consists of 14 real-
world open source applications (the Tomcat benchmark is
currently broken and therefore excluded by us [79], [80]) that
perform typical tasks. These include indexing or searching
large documents such as the King James Bible using Apache
Lucene (luindex and lusearch) and transforming XML to
HTML (xalan). A list of benchmarks is given in Table 4.
Since the monitoring code is executed regardless of whether
UMLsecRT annotations are present in the code or not, we do
not need to annotate the DaCapo benchmark applications to
evaluate the overhead of UMLsecRT.

As part of this research question, we performed two
experiments. First, we measured the execution time for each
DaCapo benchmark, both with and without monitoring.
Since DaCapo is provided as an executable jar file that im-
plements its own non-trivial class loading for the individual
benchmarks, we could only monitor the benchmarks with
UMLsecRT, as we could not modify the implementation as
needed for the Security Manager and do not know all the
methods of the benchmarks as needed for Larva. Second,

TABLE 4: Benchmarks of the DaCapo benchmark and mea-
sured execution times.

project characteristics execution time in ms
benchmark classes methods fields plain Java UMLsecRT slowdown

avrora 1,741 19,575 27,789 4,576 12,213 2.7
batik 2,121 66,734 350,799 4,195 14,145 3.4
eclipse 407 5,357 3,359 47,625 399,534 8.4
fop 1,204 29,814 86,919 2,137 15,749 7.4
h2 441 13,745 6,884 7,906 17,699 2.2
luindex 491 6,313 2,869 1,994 6,472 3.2
lusearch 491 6,313 2,869 3,839 15,967 4.2
pmd 644 35,606 49,432 4,138 13,595 3.3
sunflow 220 1,653 990 7,154 19,251 2.7
xalan 1,419 52,200 72,989 4,879 19,046 3.9

to learn about the reasons for the expected slowdown,
we profiled what percentage of the DaCapo benchmark’s
execution time was spent on which tasks.

6.2.2 Results
We were able to monitor 10 benchmarks successfully, and
had problems with 3 benchmarks using jython or geronimo.
These throw a java.lang.VerifyError–Inconsistent stack height
exception when the programs themselves use bytecode in-
strumentation after UMLsecRT has made changes. Since this
exception is also thrown when we just insert code that does
not change the behavior, the cause does not seem to be
UMLsecRT. Despite these 2 programs, there seem to be no
problems with monitoring real-world programs.

The execution times with and without security moni-
toring are shown on the right side of Table 4. On average,
execution with security monitoring is 4.1 times slower than
without. If we look at the details of the different bench-
marks, we can see a notable difference in the slowdown
between the individual benchmarks. h2 has a relatively
small slowdown with a factor of 2.2, while Eclipse has the
highest slowdown with a factor of 8.4.

Figure 13 shows the distribution of time needed for
central parts of UMLsecRT during benchmark executions.
These are instrumenting classes, checking security annota-
tions, creating new annotation objects, representing mem-
bers and their annotations, and retrieving the stack corre-
sponding to the current member. The benchmarks in the
figure are sorted in descending order by their slowdown.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 17

Fig. 13: Distribution of execution time for monitoring the ap-
plications of the DaCapo benchmark (sorted by slowdown).

We can see that the slowdown does not depend on a single
activity. On average, 56% of the slowdown is due to in-
strumenting classes, 2.7% to checking security annotations,
5.4% to creating new annotation objects, and 35.9% to stack
fetching. However, there are huge differences between the
individual projects. Analyzing the data, we can identify two
groups, one that spends most of its time on stack fetching
and the other on class instrumentation.

Looking more closely at the execution times, we see that
the projects with the lowest overhead are the ones that take
the longest even in unmonitored execution. One exception is
Eclipse, where the OSGi class loader and the structuring into
plugins cause a high instrumentation overhead. A second
exception is fop, where the high instrumentation overhead
due to the many classes combined with the short runtime
of the benchmark leads to a high slowdown. The very high
instrumentation overhead for batik can be explained by the
excessive number of fields that are all checked at class load-
ing and the many methods that need to be instrumented.
The same is true for fop, pmd, and xalan. All in all, the
slowdown seems to decrease with execution time. This, as
well as the average static instrumentation overhead of 56%,
indicates that UMLsecRT has a lower slowdown for long-
running applications than the measured average slowdown.

We performed an additional experiment to verify the
hypothesis that UMLsecRT has an acceptable slowdown on
long-running systems. We set up a Java Web application and
monitored the application’s response time to simulated user
input over an extended period of time with and without the
UMLsecRT security monitor.

As a security-critical web application, we chose the
iTrust [47] electronic health records system, which allows
doctors and other hospital staff to manage patient treat-
ments. The iTrust system was implemented as a class project
over more than ten years using Java and Java Server
Pages [45]. We deployed iTrust version 21 on a Tomcat
8 [81] server whose response times we measured using
JavaMelody. We simulated user interaction using the Sele-
nium Chrome IDE. Our simulated user behavior represents
a doctor logging into iTrust, navigating to a statistic genera-
tion functionality, generating a statistic about the number of
influenza cases in a region, which iTrust presents as a table
and a generated graph, and then logging out of iTrust. In
total, this behavior consists of 22 commands in Selenium,
and we ran it 1,000 times with and without UMLsecRT.

As for DaCapo, running this experiment with the Java

Fig. 14: Response times of the iTrust Electronics Health
Records System deployed on a Tomcat server.

Security Manager would require us to modify all methods
of iTrust. However, we were able to extract all methods
as needed for Larva and generate the AspectJ monitoring
code using Larva. Unfortunately, we were unable to run the
aspects on the Tomcat server. We tried different versions of
AspectJ and weaving commands, but we either got compile-
time weaving errors or the aspects were not executed.

Before running the experiment, we measured the time
it took to start Tomcat along with iTrust, as reported by
Tomcat. We observed a comparable slowdown to the pre-
vious experiment with an average factor of 2.34 for starting
Tomcat, 10 times with and 10 times without UMLsecRT.

If we look at the recorded response times in Figure 14, we
can confirm our hypothesis. Running the 1,000 simulated se-
quences took about an hour each time. When we run iTrust
without UMLsecRT, it has a relatively consistent response
time of 19ms. With UMLsecRT, the average response time is
21ms. We can see that the response time with UMLsecRT
decreases slightly after all classes have been instrumen-
tated. After 33 minutes, the response times fluctuate a bit,
which seems to be due to Tomcat running background tasks
and loading additional classes. Considering the average
response time of 21ms, this is only 10% higher than without
the security agent. Even in the worst case, for the peak
after 20 minutes, the difference is only 9ms. Since we ran
the experiment with iTrust deployed on the localhost, the
observed slowdown in response times is negligible when
considering the additional static overhead that is added due
to network communication in a remote server deployment.

6.3 RQ3–Monitoring Overhead and Influencing Factors
In O2, we investigated whether it is possible to monitor
real applications with UMLsecRT. While we were able to
measure the monitoring overhead for UMLsecRT, we were
unable to monitor the DaCapo benchmarks and iTrust using
the other security monitors. In this section, we explicitly
compare the monitoring overhead of the different monitors.
We have also seen that UMLsecRT can, in principle, moni-
tor long-running applications with acceptable overhead. To
gain further insight, we will examine the overhead as a
function of the number of classes to be instrumented and
the frequency with which their methods are executed.

6.3.1 Setup
In order to systematically investigate the overhead of the
runtime monitors, we generated Java programs of different
sizes, which are reduced to the main factors influencing the
monitoring. Since the logic implemented in the methods of
a program does not interfere with the «secure dependency»

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

Plain J ava
J ava Security Manager

UMLsecRT
Larva compile-time weaving

0
1000

2000
3000

4000
5000

6000
7000

8000
9000 10000

Number of classes with ten methods each
0

200
400

600
800

1000
1200

1400
1600

1800
2000

Number o
f e

xe
cu

tio
ns p

er m
ethod

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

T
im

e
 i
n
 m

s

Fig. 15: Security monitor runtimes as a function of the
number of monitored classes and method executions.

security property, we generated sequences of methods that
call each other but do not contain any other logic except for
printing the name of the executed method to the terminal
and calling the next method in the sequence. To reflect the
structure of real programs, we generated classes containing
ten methods each. The first class contains a main method
that calls the first method of the sequence in each class in a
loop, where the number of iterations is given as a command
line argument. In this way, we are able to explicitly measure
the monitoring overhead with respect to two influencing
factors, the number of methods and the number of times
each class or method is executed.

We created multiple versions of each program to ad-
dress the different security monitors. A version that runs
without security monitoring and can also be monitored by
UMLsecRT. A version in which every method is extended
in its first line with a call to the checkPermissions method
for the Java Security Manager, and two versions that will
be enriched with aspects using Larva and compiled using
load-time and compile-time weaving of AspectJ.

We generated programs of 10 to 10,000 classes, con-
taining between 100 and 100,000 methods (10 methods per
class), and executed the method sequences in each of these
programs between 1 and 2,000 times. Since the constant pool
in Larva is limited to 65,536 constants, we could not weave
the security aspects into the Java programs with 1,000 or
more classes. We were also unable to apply Larva to a Java
program with 500 classes due to another AspectJ error, but
all smaller programs were monitored as expected.

6.3.2 Results
We measured 294 data points for each security monitor,
except for Larva where we were only able to capture 168
data points. All of the raw data is included in our replication
package [63]. To visualize these results in Figure 15, we used
these data points to generate a 3D surface of execution time
as a function of the number of monitored classes and the
number of times each method was executed.

The green surface at the bottom of Figure 15 represents
the execution times of the plain Java program without
security monitoring. As expected, the execution times with
the Java Security Monitor (orange surface) are only slightly
longer than the plain Java program for only a few execu-
tions, since the monitoring code was already added at code

0
20

0
40

0
60

0
80

0
10

00

12
00

14
00

16
00

18
00

20
00

0

50000

100000

150000

200000

250000
Plain Java

UMLsecRT

Java Security Manager

Number of executions per method

(a) Execution times in relation
to the number of method exe-
cutions for 5,000 classes (Larva
only scaled up to 500 classes).

0 2000 4000 6000 8000 10000

0

50000

100000

150000

200000

250000
Plain Java

UMLsecRT

Java Security Manager

Larva compile-time weaving

Number of classes with ten methods each

(b) Execution times in relation
to the number of classes for
1,000 executions per method.

Fig. 16: Security monitor execution times for a fixed number
of monitored classes or method executions.

generation. For many executions, execution times converge
towards the execution times with UMLsecRT monitoring,
shown by the blue surface above. As expected based on
our observations in the experiments to answer O2, the static
overhead increases mainly with the number of additional
classes that need to be instrumented. On the left, we see the
execution times with Larva using compile-time weaving.
Contrary to expectation, we did not observe a significant
difference between compile-time and load-time weaving.
Since load-time weaving tends to be slightly faster, we de-
cided to show these times in Figure 15. Even for the smallest
program, Larva is significantly slower than UMLsecRT, and
the execution times rise steeply.

Since Figure 15 shows only an interpolated grid cal-
culated from the measured data, we show in Figure 16
two concrete data series for a fixed number of classes or
a fixed number of executions. Note that while the num-
ber of executions per method is fixed in Figure 16a, the
total number of method executions still increases due to
additional classes containing additional methods that are
executed. We have chosen the number of classes and the
number of method executions so that there are no visible
outliers in Figure 15 for any of the measured monitors. In
Figure 16b one can clearly see the initial instrumentation
overhead of UMLsecRT and how it relativizes over time.
Since we chose a data series for 5,000 classes, we do not have
a measurement for Larva, but it is included in Figure 16a.
You can clearly see that it scales worse than monitoring with
UMLsecRT or the Java Security Manager.

Our measurements confirm our assumption that
UMLsecRT scales well for long-running applications. Due
to the initial instrumentation overhead, we also observe
significantly longer execution times of short-running ap-
plications in this experiment, as we also observed for the
DaCapo benchmarks, but the overhead is static and rela-
tivizes for long-running applications. At monitoring «secure
dependency», UMLsecRT outperforms Larva, which is only
applicable to small applications and has significantly higher
execution times than UMLsecRT for them. UMLsecRT even
achieves a slightly better runtime overhead than the Java
Security Manager for long-running applications.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 19

6.4 RQ4–Usefulness of the Supported Countermea-
sures and Adaptations of Design Models

We conducted two user studies to evaluate the usefulness
of UMLsecRT. First, we qualitatively investigated how the
provided countermeasures are perceived by developers and
whether they find them useful and practically applicable.
Second, we quantitatively investigated whether the result
of the adaptations made by UMLsecRT when a countermea-
sure is executed is a useful addition to the current way of
displaying such information.

6.4.1 Setup

Since the aspects we are interested in are different for
the countermeasures and the model adaptations, we con-
ducted two conceptually different user studies. First, we
qualitatively investigated the usefulness and applicability
of UMLsecRT and in particular the countermeasures. Due to
the broad scope of this study, we conducted interviews with
experts. Second, we investigated the usefulness of adapting
UMLsecRT in user surveys due to the direct comparability
with the current state of practice.

Countermeasures: To gain insight into the usefulness
of the countermeasures supported by UMLsecRT, their
practical applicability, and the needs of the industry, we
conducted semi-structured expert interviews. We sought
security experts and experienced developers from industry
to participate in our survey. We were able to recruit six
experts from five companies to participate in our interviews.
The participants had between 4 and 22 years of experience,
with a median of 6 years.

The first interviewee works as a security expert for one
of the world’s largest automotive companies. In the same
domain, we had two experts currently working for two
of the world’s largest automotive suppliers. One works as
an innovation manager in the area of automotive security
and the other as a security manager for general automotive
technologies. Two experts work for the same consulting and
software development company but for different clients, one
in embedded software and the other in insurance software.
The last expert was a software developer working for one
of the world’s largest IT consulting companies as a web
application developer on client projects.

In the interviews, we first introduced the general idea
of UMLsecRT. Then, for each of our countermeasures, we
asked the participants for their professional opinion on
advantages, disadvantages, practical applicability in the in-
dustry, and what they would need that is currently missing.

Model adaptations: To investigate whether the adap-
tations of UMLsecRT are useful for inspecting security
violations, we conducted a quantitative user study asking
developers about the usefulness of three different represen-
tations of a security violation, two of which were generated
by UMLsecRT. Therefore, we introduced the Eclipse Secure
Storage, which is also used as a running example in this
work, to the participants as a subject system. We then
showed them three representations of a security violation
caused by an Eclipse plugin executing an implementation
similar to the one shown in Listing 1 in a startup action. The
security violation to be inspected is an illegal access to the
get(String,String) method of the Eclipse Secure Storage. One

of the representations reflects the current state of practice,
and the other two are representations automatically gener-
ated by UMLsecRT:

1) The first representation is the stack trace of a security
exception, as it would be currently available when
investigating a security violation.

2) The second representation was the generated deploy-
ment diagram (similar to Figure 8).

3) The third was the generated sequence diagram gener-
ated by UMLsecRT (similar to Figure 9).

In order not to bias the participants, we did not tell
them that two of the representations were generated by
UMLsecRT, but that we were investigating the usefulness
of security violation representations. For all representations,
we asked them to identify key aspects of the vulnerability,
both to force them to examine the representations in detail
and to serve as control questions (although the answer
was sometimes not 100% correct, there were no completely
implausible answers). Next, we asked participants to write
down the advantages and disadvantages of all representa-
tions. Finally, participants were asked to rate the usefulness
of each representation for investigating a vulnerability on a
scale from one for not useful to five for very useful.

A total of 39 experienced software developers partici-
pated in this quantitative user study. Of these developers,
51% had more than 10 years of experience and another 26%
had more than 5 years of experience. Three respondents had
less than 3 years of experience. The majority of our respon-
dents have an academic background (29 respondents), but
we also had 9 respondents who were employed in industry.
Two of these participants indicated that they were also
students, and one participant identified only as a student.

6.4.2 Results
Both user studies show that UMLsecRT provides practical,
useful, and applicable solutions for countermeasures and
improving the inspection of security violations. In the fol-
lowing, we discuss in detail the results of our user studies,
the lessons learned, and the potential for future research.

Countermeasures: For all proposed countermeasures,
including logging only, the experts identified scenarios in
which these countermeasures are appropriate. The use-
fulness of the countermeasures depends on the use case,
particularly for the responses of logging only, security ex-
ception, terminating the system, and continuing execution
with default values. While we expected most of these, we
were surprised to find that the security exception is also
considered quite problematic. For custom countermeasures,
it is mainly the required effort that limits broad applicability.
Logging: More exhaustive logging was seen as an essential

requirement to facilitate the investigation of security
violations and to facilitate the improvement of the sys-
tem. However, only some of the participants considered
logging alone as a valid option in completely uncritical
areas. The majority called for a combination with other
countermeasures. One expert noted that while such
advanced logging may be very helpful to developers, it
may also raise privacy issues that need to be addressed.

Exception: In particular, one developer mentioned that in-
jected code could also catch the security exceptions

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

thrown by UMLsecRT, which would likely reduce its
effectiveness. Also, attackers could learn the system’s
security responses. The need to handle the security
exceptions in their own application was one of the
issues mentioned, and that it could be a challenge to
implement this properly, especially since all developers
would have to deal with this type of exception. In
addition, it would be a challenge to test the exception
handling that becomes part of the functional code.

Shutdown: Terminating the system was seen as a good
solution for systems without strict availability require-
ments, but also for microservices where new instances
are started on demand. For most systems, however, this
should be a last resort. Since we have not yet introduced
our active countermeasures, most participants asked for
a way to make this decision context-specific.

Default values: Specifying defaults was mostly seen as a
doable task that should be part of the system documen-
tation anyway. It was also thought that the need for ex-
plicit specification might force developers to think more
about such cases from the beginning. In the opposite
direction, default values were seen as something that
could easily be generated by tool support. However, a
major concern was whether UMLsecRT would really be
capable enough to prevent future damage from contin-
uing execution, or whether an attacker would be able to
find a backdoor. The ability to gain deeper insight into
an attack was appreciated, but assumed to be limited
to a few use cases. Finally, the fact that the control flow
does not change, as opposed to having exceptions, was
seen as an advantage from a testing perspective.

Custom countermeasures: All participants considered this
variant to be the one that meets all their requirements.
Furthermore, they all assumed that the overhead would
still be manageable, especially if this variant was not
used in all locations. However, the developers in par-
ticular were skeptical about the practical implementa-
tions, as they did not consider themselves sufficiently
trained in security to implement the countermeasures.
The security experts, on the other hand, were enthusi-
astic about this countermeasure because it allows them
to separate security code from logical code and to im-
plement sophisticated responses for critical parts of the
system. To facilitate such tasks, it was asked whether
one could invoke Helm charts, or change permissions
in role-based access control (RABAC). Identifying such
standard tasks and providing code generators was one
of the main wishes for our future research.

In summary, the countermeasures of UMLsecRT are appli-
cable in practice, and the standard scenario would be as
follows: Participants would enable advanced logging, and
for critical parts of the system, security experts would define
sophisticated measures. They would include an assessment
of the current state and, based on that, various customized
responses ranging from doing nothing to changing system
configurations to shutting down the system. What would
be the most appropriate default response was not clear and
was assumed to be application specific.

Model adaptations: In Figure 17, we show the results of
the quantitative user study on the usefulness of the model

Stack Trace

Deployment Diagram

Sequence Diagram

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

3

5

2

7

10

2

6

15

3

18

6

13

5

3

19

1 2 3 4 5not useful very useful

.

Fig. 17: Usefulness of security violations representations.

adaptations. While the answers have a low variance for the
usefulness rating of the known stack trace and especially
for the generated sequence diagram, the answers for the
proposed deployment diagram are more diverse. Both the
stack trace and the sequence diagram were rated as useful
for investigating the reported vulnerability with an average
of 3.4 and 4.2 on a scale of 1 to 5, respectively.

The deployment diagram received an average rating of
2.8. While 23% of the participants rated the deployment
diagram as useful for investigating a security vulnerability,
38% of the participants rated it as not useful or undecided.
For the stack trace and sequence diagram, the majority of
participants rated these representations as useful (59% for
the stack trace and 82% for the sequence diagram). While
the stack trace was mostly (18 votes) rated with a usefulness
of 4, the sequence diagram received almost as many votes
for this level of usefulness (13 votes), and with 19 votes even
more votes for very useful (rating of 5).

The well-known stack trace is considered useful, but
the votes for the sequence diagram are even more posi-
tive. Based on the votes alone, we can conclude that the
participants in our study have a mixed impression of the
shown deployment diagram, but still see some use in it, but
perhaps only in special cases. To identify such cases, we
next discuss the qualitative answers to the advantages and
disadvantages.

The stack trace is often rated as a familiar structure asso-
ciated with the source code, but does not provide detailed
information about the vulnerability. Similarly, the deploy-
ment diagram does not provide detailed information, but is
rated as an easy entry point suitable for non-technical stake-
holders. The sequence diagram may also be appropriate for
non-technical stakeholders. Many participants agreed that
the sequence diagram provides a detailed description of the
security violation, but at the expense of readability for larger
violations. The models may require trained personnel for
productive use. In summary, many participants commented
that the integration of all representations would be best for
them. Since we did not tell them that the models were from
UMLsecRT and that this suggestion was indeed the case,
we see this as further confirmation of the model adaptations
supported.

In summary, the participants in our case study rated the
sequence diagram, which we use to represent security viola-
tions in UMLsecRT, as the best representation for providing
details about the detected security violation. However, for a
practical application, the integration of all representations
seems to be the favorite of the participants, which we
already support for the two models. Since the sequence
diagram uses methods as messages, it provides the same

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 21

integration with the code as the stack trace, and integration
with the stack trace is straightforward.

6.5 RQ5–Scalability of the Model Synchronization
For UMLsecRT to be usable at development time, it must
integrate with development environments and be usable
without interrupting the development process. Two impor-
tant aspects are the time needed to perform tasks, in this
case primarily the synchronization of security annotations
between models and code, and whether the models facilitate
annotation of the system. Especially for the latter, model size
is an essential measure [82]. In this part of the evaluation,
we investigate whether the synchronization approach can be
applied to real Java projects of different sizes in a reasonable
amount of time, and whether reverse engineering produces
models with a manageable size for large programs.

6.5.1 Setup
We investigate the scalability of TGG-based synchroniza-
tion for the two applications discussed (reverse engineering
and synchronization). First, we investigate how the reverse
engineering of UML class diagrams from Java source code
scales in terms of execution time and model size. Second, we
investigate the propagation of UMLsec security annotations
into the implementation.

Our selection of subject systems is based on previous
experiments performed for related approaches [55], [83],
[84], [85], [86], as well as on a standard catalog for analyzing
the evolution of Java systems [87], to address the research
question. We selected 19 open source Java programs from
different application domains, including software systems
for both software developers and end users. We also aimed
to include a range of different program sizes.

First, we applied our proposed synchronization tech-
nique to all subject systems to reverse-engineer a UML class
diagram (step 1 in Figure 1) while measuring execution
times. We then simulated step 2 by randomly injecting
UMLsec security annotations into the reverse-engineered
UML class diagrams and propagating them into the Java
source code (step 3). Again, we measured the execution
times of the synchronizations.

6.5.2 Results
Table 5 lists the Java programs used as subject systems along
with statistics about their size. These statistics include the
logical lines of code (LLOC) of the program’s source code,
as well as the number of types, methods, and fields. Types
are classes, interfaces and enumerations.
Reverse engineering: The last column of Table 5 shows the

execution times of the model generation in seconds.
Here we show the median of 5 runs. Figure 18 shows
the detailed runtimes of the transformations. The total
height of each bar is equal to the corresponding runtime
in Table 5 and consists of the time spent for parsing
the source code and the transformation with TGG. We
can see that the transformation is able to extract UML
class diagrams for small and medium projects within
seconds and scales even for larger programs.
The UML models created are at the granularity of
the implementation-level class structure, and additional

TABLE 5: Program statistics and execution times of the UML
model creation.

Project Statistics
Duration

Name Version LLOC types methods fields in s

QuickUML [88], [89] 2001 2,667 22 175 156 3.38
JSciCalc [90] 2.1.0 5,437 131 563 200 7.47
JUnit [91] 3.8.2 5,780 188 841 161 6.05
JSSE – OpenJDK [92], [93] 8 20,896 236 1,875 861 23.22
Gantt [94] 1.10.2 21,228 397 3,925 1,323 16.95
Nutch [95] 0.9 21,473 331 1,750 1,083 16.79
Lucene [96] 1.4.3 25,472 333 2,096 1,166 12.98
log4j [97] 1.2.17 30,662 459 3,190 1,226 18.83
JHotDraw [98] 7.6 32,434 480 3,781 900 34.47
PMD [99] 3.9 43,063 620 4,064 1,582 32.17
jEdit [100] 4.0 49,829 606 3,429 1,976 25.29
JTransforms [101] 3.1 71,348 610 1,509 396 23.65
iTrust [47] 21 77,501 964 6,166 3,074 38.68
JabRef [102] 2.7 77,813 1,371 5,702 3,669 49.96
Xerces [103] 2.7.0 102,279 865 8,267 4,676 47.76
ArgoUML [104] 0.19.8 135,542 1,596 12,401 3,458 78.45
jfreechart [105] 1.0.19 144,338 1,093 11,861 3,258 70.74
Tomcat [81] 6.0.45 177,013 1,732 16,661 7,991 87.52
Azureus [106] 2.3.0.6 201,541 3,432 17,564 7,106 100.47

Fig. 18: Run times for the program model and UML TGGs.

more abstract models must be extracted manually. The
only abstraction from the implementation is the reduc-
tion of details from the statement level of methods
and fields to dependencies between classes. However,
this abstraction significantly reduces the complexity in
terms of the dependency types used and the number of
dependencies considered. Size is an important aspect
with respect to the manual handling of models [82]. For
this reason, Figure 19 shows the size of UML models
corresponding to software systems of different sizes.
To relate these values to other models representing the
same software systems, we also show the sizes of the
corresponding MoDisco models and a program model
(pm) of the GRaViTY tool, which has been designed
to represent object-oriented programs at a high level of
abstraction [55]. All models seem to grow more or less
linearly with the number of lines of code. But while the
program model has on average 28% of the number of
nodes of the MoDisco model, this ratio is only 11% for
the extracted UML models.
In summary, from a model size perspective, UML class
diagrams reverse-engineered with our UML TGG are
not as advantageous as manually created UML mod-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

0 50000 100000 150000 200000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000 pm
Linear (pm)
uml
Linear (uml)
modisco
Linear (modisco)

logical lines of code (LLOC)

nu
m

be
r

of
 m

od
el

 e
le

m
en

ts

Fig. 19: Relationship between implementation sizes and
corresponding model sizes.

Fig. 20: Time needed to propagate a security annotation
from the UML model into the implementation.

els, but they provide a foundation for proper reverse-
engineered models. High-level models can be manually
extracted from the reverse-engineered models. Using
realization dependencies, these extracted models can be
connected to the reverse-engineered models [107].

Synchronization: Figure 20 shows the time taken to prop-
agate a security annotation from the UML models to
the implementation as an average of 10 annotations
per project. Similar to reverse engineering, the synchro-
nization time increases with project size, but is still
a fraction of reverse engineering. While for small to
medium projects (< 72k LLOC) it is feasible to syn-
chronize after every change, for larger projects it may
be a good idea to propagate multiple annotations at
once. For example, it takes 26 seconds to propagate
one annotation on Azureus, but only 50 seconds to
propagate 10 annotations, and 165 seconds to propagate
50 annotations in one run.

To answer O4, the results show that the time required
for initial model extraction is reasonable even for larger
programs. Since our implementation supports incremental
model synchronization, initialization costs may be omitted
later in the case of evolving programs. Synchronization also
scales well for small to medium-sized programs. It is still
applicable to larger programs, but should then be applied
in batches of annotations.

In this evaluation, we have shown that UMLsecRT al-
lows us to effectively monitor Java applications for compli-
ance with design-time security properties and to mitigate
security violations as considered in the CWE. Furthermore,
we have shown that there is an initial overhead depending
on the size of the program, which is relativized over time.

Accordingly, an efficient implementation of UMLsecRT is
feasible for long-running programs. Furthermore, develop-
ers agree that the UML models generated by UMLsecRT can
help to investigate security violations and the countermea-
sures allow for practically relevant mitigations. In addition,
synchronizing security annotations with the implementa-
tion allows security experts to work on more abstract and
smaller UML models, and even scales for large programs.

6.6 Threats to Validity

Threats to validity include construct, internal, external, and
conclusion validity [108]. In this section, we discuss the
threats to the validity of the UMLsecRT evaluation.

6.6.1 Construct Validity
In our evaluation of UMLsecRT’s effectiveness (O1) in miti-
gating security violations, we constructed the test cases we
used for the evaluation based on the examples from Juliet.
Since this dataset contains only static analysis examples and
no exploits, the way we constructed the examples may affect
the validity of the experiment. However, for all negative test
cases, a security violation occurs at runtime when the test
case is executed without security monitoring, making them
all cases that need to be mitigated.

When constructing the experiment to evaluate the ap-
plicability of UMLsecRT to real-world programs (O2), we
decided to measure the overhead in security-compliant sce-
narios and that annotating the benchmarks is not necessary
to gain insight into the applicability to real-world programs.
First, both decisions do not affect the ability to identify gen-
eral problems with the monitoring approach, as shown by
the identified problems with the instrumentation technolo-
gies. Second, since security violations are exceptional cases
that must be mitigated under all circumstances, the primary
applicability in terms of overhead is mainly relevant to the
security-compliant scenario we focused on. For reasons of
practicability, we decided not to recreate the DaCapo bench-
mark with security annotations. This decision has almost
no impact on the runtime, as the entire monitoring code
is still injected and executed. The only difference is that in
our experiment, the injected code is always executed with
empty sets of security-critical signatures, which is the most
common case even in annotated programs.

The design of our user studies (O4) did not allow
participants to interactively apply our approach. The first
study was based on generated views of a vulnerability
that we selected and presented in a survey. In addition,
we asked participants to consider the three views pre-
sented independently. In the second study, we presented
the countermeasures only in an interactive interview, but
allowed participants to ask questions. These design choices
for the user may have influenced the participants’ responses
regarding the usefulness of the UMLsecRT for investigating
vulnerabilities and implementing countermeasures.

To study the scalability of UMLsecRT’s synchroniza-
tion between models and code (O5), we had to construct
meaningful deltas to propagate from the models to the
source code. Here, we decided to consider a scenario where
synchronization is performed after each change, which in
the application of UMLsecRT is usually the addition of a

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 23

security annotation. This choice may affect the validity of
the experiment. Nevertheless, we considered a relevant case
and outlined the effect of considering multiple annotations
at once on an example.

6.6.2 Internal Validity
To study the effectiveness of security monitoring approaches
(O1), we had to implement UMLsec «secure dependency».
A potential threat is that we were able to implement it
better in UMLsecRT than in other monitoring approaches.
To counter this threat, we discussed in detail the challenges
of implementing «secure dependency».

To test our assumption that long-running applications
can be monitored with low overhead (O2), we implemented
an experiment in which we monitored the response times of
iTrust. The choice of iTrust is based on our own experience
and may compromise the validity of these experiments.
Nevertheless, this example shows that there are applications
that can be monitored with low overhead.

In our experiments on the monitoring overhead (O3)
we selected a particular method pattern on which we com-
pared the different monitors that might be biased towards
UMLsecRT. However, evaluations of other security monitor-
ing approaches such as BeepBeep use similar patterns [31].

To recruit participants for the two user studies (O4), we
primarily advertised the studies within our own networks,
asking them to participate and to forward the invitations.
This approach may have influenced the composition of
participants in our study. In conducting the user studies, we
may have projected our own bias towards UMLsecRT onto
the participants. To reduce this bias, we carefully designed
the two studies by not mentioning UMLsecRT at all in the
quantitative study and by having an open discussion about
the industry’s needs in the interviews about countermea-
sures of UMLsecRT.

6.6.3 External Validity
When studying the effectiveness of UMLsecRT in detecting
security violations (O1–Effectiveness), we may not cover
all relevant cases. We used the Juliet test suite as a guide
to systematically select relevant vulnerabilities that can be
detected by UMLsecRT. While there may be other relevant
vulnerabilities that could be detected and mitigated using
UMLsecRT, we currently only consider the selected ones
as possible. Whether UMLsecRT is suitable for detecting
security violations due to other vulnerabilities will be the
subject of future work.

Similar to the selected vulnerabilities, the benchmarks
and iTrust used to evaluate applicability to real-world ap-
plications (O2) may not be representative of any software
system. To mitigate this threat, we explicitly selected the
well-established DaCapo benchmark instead of a custom
selection of applications and workloads.

A threat to the validity of our user studies (O4) is the lim-
ited number of participants, which may limit generalization
to other groups of participants. In addition, the composition
of the participant groups may not be representative. In the
quantitative study, academics are in the majority, but we
did not observe differences in responses between academics
and practitioners. In the qualitative study, the automotive
domain may be overrepresented, which could affect the

generalizability of the results. Finally, by participating in a
study, participants may have been subject to the Hawthrone
effect [109] and may have given answers that they would
not have given in a non-study situation. Nevertheless, even
assuming a weakened significance, the user studies indi-
cated a good usefulness of the adapted system models for
investigating security violations and the usefulness of the
countermeasures. We will investigate the usefulness from a
user perspective in more detail in future work.

As well the selected applications as the deltas used to
evaluate the scalability of UMLsecRT (O5) might not be
representative. To minimize this threat, based on previous
works and the literature, we selected applications of dif-
ferent sizes and from different domains. The annotations
themselves, do not allow for much variation and can be
considered as relevant changes to be considered in the
evaluation. We already investigated structural changes in
previous works [18], [107].

6.6.4 Conclusion Validity
Regarding O2–Applicability, we have successfully demon-
strated that it is possible to monitor for vulnerabilities and
breaches in real-world Java programs. However, we did not
perform the evaluation based on vulnerabilities that have
been documented in the wild in real-world applications.
Nevertheless, as part of the experiment that addresses O1,
we have shown that UMLsecRT is capable of detecting
real-world security violations in minimal examples. Further-
more, as part of our case studies, we show two exemplary
violations that are mitigated on real-world systems.

Based on our two studies, we conclude that both the
adaptations and the countermeasures are useful (O4). While
we provide reasonable indications, it remains to prove these
conclusions in statistically significant experiments.

Regarding the scalability of model synchronization (O5),
we conclude from the measured numbers that synchro-
nization can be practically integrated into real develop-
ment workflows. While we show the principle suitability,
it should be confirmed in an independent user study.

7 CASE STUDIES

In the evaluation, we conducted controlled experiments
to evaluate the individual contributions of UMLsecRT.
Here, we investigate in a practice-oriented context whether
UMLsecRT is in principle capable of supporting the devel-
opment of secure software systems as intended, and identify
possible pitfalls. In particular, we focus on UMLsecRT as
a whole, from requirements to the execution. Since we are
interested in qualitative real-world experiences, case studies
provide a suitable means to investigate the objectives [110].

The first case study is the Eclipse Secure Storage of the
Eclipse IDE, which has already been used as a running ex-
ample in this work. The second case study is the electronics
health management platform iTrust, which we have already
used in the runtime overhead evaluation.

Since the developers of iTrust provide complete docu-
mentation and models are available in existing research [2],
[35], [45], [111], we use iTrust to demonstrate the feasibility
of using UMLsecRT to develop a new software system
with security in mind. While Eclipse also provides good

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

documentation of the implementation, there are no require-
ments or models available. Therefore, we apply UMLsecRT
to Eclipse Secure Storage to demonstrate the feasibility of
using UMLsecRT for legacy projects. In both cases, we
replay actions taken during the development of the two
systems while applying UMLsecRT.

7.1 Eclipse Secure Storage
Our first case study focuses on the application of UMLsecRT
to a security-critical part of the Eclipse IDE, the Eclipse Secure
Storage [46], which is used as a running example in this pa-
per. How exactly Eclipse Secure Storage works is described
in the Eclipse help document [46]. However, this description
is rather high-level and is complemented by the low-level
API documentation. We consider Eclipse Secure Storage to
be the perfect case study for investigating the migration of
legacy projects to UMLsecRT due to its security-criticality,
good documentation, and widespread use in practice.

7.1.1 Reverse Engineering of Models
Since no models exist for Eclipse Secure Storage, the first
step was to reverse engineer models to which we can then
apply the UMLsec annotations. We automatically reverse-
engineered a detailed UML class diagram from the Eclipse
Secure Storage source code using UMLsecRT, which took
9.3 seconds and therefore did not cause any major interrup-
tions. This gave us the model from which we presented a
critical excerpt in this paper in Figure 2.

One drawback of reverse-engineered models is their
size. Initially, we tried to visualize the entire UML model
in a single view in Papyrus, but this was not feasible.
Since we were already familiar with the structure of the
Eclipse Secure Storage from its documentation, and since
pure architectural representations are beyond the scope of
UMLsecRT, we skipped extracting meaningful views and
proceeded directly with the security engineering.

7.1.2 Static Security Specification
One of the two main goals of applying UMLsecRT to legacy
projects is to create artifacts that allow for easier specifica-
tion of security properties compared to specification at the
implementation level. To this end, we started by annotating
the reverse-engineered model with UMLsec security proper-
ties and creating views of the model along the specified se-
curity layers. We were guided by CARiSMA’s static checks,
which revealed classes with missing security annotations
according to UMLsec secure dependency after classifying a
security-critical property or operation, facilitating annotat-
ing the models and reasoning about security implications.
However, since we assumed that the Eclipse Secure Storage
was security compliant, we always decided to add the
necessary annotations and not to delete the dependencies.
We propagated the annotations to the source code whenever
we reached a state that was consistent according to the
UMLsec secure dependency and before identifying a new
element to annotate in the documentation. The propagation
was usually done before we identified the next element and
therefore did not have a major impact on our workflow.

Technically, we have demonstrated the feasibility of
the tools for annotating the models and, in particular, the

synchronization mechanism of UMLsecRT for propagating
the security requirements to the implementation. From a
developer’s point of view, the main difficulties in annotating
the models is in the UML editors used. Handling the rela-
tively large UML class diagram is not as fluid as navigating
through the Java source files. However, once a suitable view
had been created, we found the graphical representation
easier to follow than the source code files because of the
explicitly visible class-level dependencies.

7.1.3 Runtime Monitoring
Since any installed plugin can access the password store
in the Eclipse IDE, and it is not predictable which plugins
a developer will install in her Eclipse IDE, we consider a
malicious plugin like the one introduced in Section 2.4 as a
reasonable example. To conduct this part of the case study,
we implemented this malicious plugin that attempts to ille-
gally access passwords stored in the Eclipse Secure Storage.
We also extended the Eclipse Secure Storage implementation
with countermeasures to actively prevent such illegal access.
After these two enhancements, we monitored Eclipse with
the UMLsecRT agent and executed the malicious plugin.

Since the security annotations had already been propa-
gated to the source code by UMLsecRT, all that remained
was to manually launch Eclipse with the UMLsecRT agent
attached. To do this, we simply launched the new instance
from the Eclipse instance containing our annotated Eclipse
Secure Storage project by adding the agent to the Eclipse
launch configuration. Upon launching this new instance,
UMLsecRT successfully mitigated access to the security
layer and generated sequence and deployment diagrams as
shown in this paper. Since we used similar diagrams in our
evaluation of the usability of the model adaptations, these
observations are directly applicable to this case study.

7.2 iTrust Electronics Health Management System
The second case study consists of a Electronic Health Records
system developed as a class project over more than ten
years [45], [47]. The main documentation is provided in the
form of requirements describing use cases for the iTrust
system. The software system itself was implemented in
Java using Java Server Pages (JSP). In addition, design-
time models have been created as part of various research
activities [2], [3], [18], [35], [59], [111], [112], [113]. Based on
these artifacts, we simulate the implementation of the iTrust
system using UMLsecRT from the very beginning, starting
with requirements engineering. In all steps we reused the
existing iTrust artifacts and simulate their creation while
following the UMLsecRT development approach.

7.2.1 Requirements Engineering
Typically, the development of a software system begins with
domain analysis as part of requirements engineering [114].
The knowledge of entities and relationships within the
system domain is captured in a domain model, which
allows the identification of basic security requirements in
the domain [115], [116], such as what is sensitive data, such
as personal data or medical records. Specifying the intended
functionality of the software system based on the domain
model is one of the first steps in requirements engineering.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 25

For this purpose, UML provides the notation of use case
diagrams, and iTrust uses a publicly available use case-
based specification of its requirements [117].

To simulate this phase, we started with a domain model
showing basic concepts in a hospital [118], such as doc-
tors treating patients, and annotated it with basic security
requirements using UMLsec secure dependency. Then, to
simulate requirements engineering, we manually recreated
iTrust’s use case diagram based on iTrust’s requirements. We
took the domain model as given and refined it by specifying
the use case diagram. Whenever there was a refinement
relationship between the use case diagram and the domain
model, we explicitly modeled that relationship. Since this
step does not differ significantly from general domain and
requirements modeling, we see it mainly as a preparatory
step for the specific tasks of applying UMLsecRT and for
getting an impression of the reusability of early security
specifications. In the next step, we further refined the do-
main model and use case diagrams to specify an architecture
that allows the implementation of the specified use cases.

7.2.2 Software Architecture and Security Modeling
After requirements engineering, the architecture of the soft-
ware system is specified based on the requirements mod-
els and textual requirements. Following the principle of
security by design, we must explicitly consider security
requirements in this step [8]. Accordingly, in this section
we discuss the simulation of the architecture specification
for the iTrust system. In doing so, we focus on the effort
required for security specification using UMLsec at the level
of detail required for effective application of UMLsecRT
security monitoring, and how the reuse of early security
specifications supports this effort.

Starting from the models developed in requirements
engineering, we iteratively refine these models until we
arrive at a detailed specification of the iTrust system as
it was reverse engineered in previous work [2], [3]. More
specifically, we simulated three evolutionary steps:

1) We defined classes to technically represent the roles and
actors from the domain model and use case diagram.

2) We added data classes for storing medical information
about patients, contact information, appointments, etc.

3) We added classes and operations to implement the
functionality, use case by use case.

After each extension step involving the addition of a
coherent set of model elements, a security engineering step
takes place in which we propagate the security annotations
from the requirements models into the architecture and
ensure compliance with the UMLsec secure dependency. In
doing so, we were provided with a list of security violations
detected by the UMLsec checks implemented in CARiSMA,
which are executed each time new security annotations are
specified. While many of the required security annotations
could be easily specified in advance, there were cases that
we did not immediately recognize, but were reported to
us by CARiSMA. Here, as intended by the check, we con-
sidered whether a security level should be extended to a
new class or whether we should reconsider the dependency.
However, since the given design of iTrust is required for
the subsequent steps of the case study, we fixed all reported
security issues by adding the required UMLsec stereotypes.

Overall, there was quite some effort in specifying the
architecture and reasoning about all security implications,
but the effort did not seem to differ from applications of
UMLsec in the industry [36], [37], [38], [39], [40], [41]. Reuse
of early security annotations could be facilitated by more
tool support, but this is beyond the scope of UMLsecRT.

7.2.3 Implementation
After specifying the architecture, we need to implement
the software system. Using the synchronization mechanism
of UMLsecRT, we generated an early class layout from
the architecture. Then we manually filled this layout with
functionality. During this step, UMLsecRT kept the model
synchronized with the manual implementation changes.
Since this results in adding new elements to the model, addi-
tional security refinements are required. We performed this
manual extension by copying and pasting implementation
fragments from iTrust into the generated class layout.

A technical problem we encountered was that the
MoDisco parser used is not incremental and creates a
completely new source code model each time. This was
treated by our synchronization as if all UML elements were
discarded and new ones were created reflecting the new
MoDisco model. Since the security annotations are also
part of the implementation, there is no loss of informa-
tion except for the refinement relations when using design
models of multiple abstractions. To preserve the refinement
relations, we simulated changes by manually copying the
corresponding changes directly into the MoDisco model.
Since incremental parsers exist [119], [120], we see this as
a minor and easily solvable implementation challenge.

In summary, we were able to generate an initial code
skeleton that is connected to the design-time models
through UMLsecRT’s correspondence model. From a user
perspective, there was no difference from code generation
using other modeling tools such as Enterprise Architect or
Rational Architect. In addition, we were able to continu-
ously synchronize the growing source code with the design-
time models, with only minor technical issues related to
multiple models with different abstractions. As we detailed
the implementation based on UMLsec secure dependency,
we were notified of methods that were not annotated as
expected and therefore needed to undergo a security review
to determine if the security requirements were met or if
changes were needed. We see this as a systematic way to
raise awareness and guide security reviews, as also indi-
cated in the expert interviews.

7.2.4 Runtime Monitoring
With the annotated source code, no additional effort is
required to run iTrust with security monitoring. To simulate
an attack, we assume that the Apache Commons Codec
library has been replaced during deployment with a ma-
licious version that attempts to gain access to sensitive
information such as billing information. To do this, we
implemented a malicious version of this library that takes
advantage of being called by a sensitive method deep in the
iTrust system, and exploits a missing authentication in the
constructor of the SearchUserAction class that we found.

When we started iTrust, we immediately observed a
mitigated attack when interacting with the web UI, which

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

surprised us because no part of the code using the malicious
library should have been executed. In the adapted models,
we saw that the violation did not come from the malicious
library, but from the Java JSP interpreter accessing annotated
methods of iTrust. Using the adapted models, we were able
to trace this violation to code in the JSP implementation that
directly interacts with annotated Java methods. Since this
is expected and compliant behavior, but we are unable to
annotate code in the JSP files, we decided to extract such
code into a methods in the Java implementation that serve
as secure entry points. In most cases, these extracted code
fragments even included an implementation of authentica-
tion before executing a critical method. After this change,
iTrust behaved as expected and our malicious library was
executed as intended, but access to the billing information
was prevented by UMLsecRT.

In summary, we had to investigate an unplanned secu-
rity violation that we were not aware of beforehand. The
model adaptations helped us to identify the cause of the
violation. Furthermore, we can say that this was indeed a
true positive violation. Both this and the planned violation
were successfully mitigated, demonstrating the practical
feasibility of UMLsecRT to enforce design-time security
requirements for secrecy and integrity in practical scenarios.

In the two case studies, we were able to show that the
results of the individual steps described in the previous
sections work as expected when applied as a whole to
real projects, and thus provide the developer with much-
needed support for monitoring compliance with design-
time security specifications without the need to explicitly
specify monitoring policies. Furthermore, our case studies
show that the use of UMLsecRT facilitates systematic se-
curity reviews of software systems, thereby relativizing the
effort required for security annotations, since these reviews
must be performed for security-critical systems anyway.

8 DISCUSSION

In this section, we discuss the assumptions, limitations, and
implications of UMLsecRT.

Our main assumption is that systems are developed us-
ing model-driven security engineering. The need for design
models as a prerequisite for using UMLsecRT may lead to
limitations in its applicability. In this regard, we consider
two factors that might limit its practical applicability.

First, agile development may not allow for the required
model-driven development. However, since Rumpe shows
how to apply agile development to model-driven develop-
ment [121], this should be a minor limitation. Furthermore,
our synchronization allows for iterative development of
models and code. However, in many safety-critical domains,
standards such as ISO/EC 62304 for medical device soft-
ware development [122] require the development and main-
tenance of the necessary artifacts. Pure security monitoring
is even possible by working directly on the source code, but
without many of the benefits of UMLsecRT.

Second, UMLsecRT may not be able to repay the cost
of the additional effort required to produce detailed design
models. However, these artifacts are likely to be required
by standards to which software systems in many security-
critical domains must conform. In this case, there is no

additional cost to using UMLsecRT. For all other systems,
using UMLsecRT may result in additional effort to produce
these artifacts. In this case, UMLsecRT’s automated reverse
engineering of UML models can be a cost-effective solution.
In any case, if developers want to use our approach, they
should adopt model-driven development practices.

It may seem that annotating the entire code base would
be a huge overhead and might threaten usability. However,
large amounts of annotation are widely used in the industry,
e.g., in the Spring framework [123] or Jackson [124]. Consis-
tent with these observations, participants in our quantitative
user study did not see problems in specifying the informa-
tion needed in annotations or the number of annotations
needed. Furthermore, most of the data we need has already
been collected during threat modeling and can not only
be reused at low cost, but can even be improved by our
approach. The suitability and usefulness of UMLsec for
specifying this information has been evaluated in different
contexts. For an extension of UMLsec with variability, we
conducted a user study that found good applicability even
though it was a complex extension of UMLsec [125]. Also,
in a public report of the EU project VisiOn [126], the pilots
write that they feel able to analyze complex aspects of
privacy and security [40]. In a comparison of privacy models
by Pierre Dewitte et al., the CARiSMA tool we use scored
highest for tool support, indicating good applicability [127].

While our assumptions may limit the applicability of
UMLsecRT, when using UMLsecRT, developers implicitly
follow other best practices for secure system development.
Using UMLsecRT leads developers to implement the princi-
ple of security by design and allows them to systematically
identify security problems early.

Regarding the performance of our implementation, we
measured a monitoring overhead of 4.1x. While we have
shown that the overhead for instrumenting the classes be-
comes less relevant for long-running applications, there is
room for improvement in the performance of the checks,
which threatens the applicability to real applications. The
overhead is mainly the retrieval of the UMLsecRT stack for
the current thread, which currently happens twice for each
method call, at entry and exit. A possible solution could be
to introduce a field in each class that holds the stack, which
is easy for single-threaded applications, but complicated
when objects are shared between multiple threads. The
relevance of the slowdown could be reduced by monitoring
only the critical core parts of an application, similar to
Bodden et al. [128]. Again, the models used in UMLsecRT
could be used to identify these parts.

Another way to implement UMLsecRT is to extend the
existing Java annotations to be used with aspects [129]. A
disadvantage of this approach is that the monitoring is part
of the target program. Also, it may not be possible to control
a monitored application in a sophisticated way, since the
aspects always run at the application level. Moreover, there
is an inherent security risk that an attacker might learn
that UMLsecRT aspects are part of the program and use
reflection to disable or, worse, corrupt them.

The size of the reverse-engineered UML models may
limit the applicability of UMLsecRT. However, using ap-
propriate views on the extracted models, they can be ef-
fectively annotated with UMLsec security requirements, as

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 27

demonstrated in our case studies. The UML supports the
concept of views, which allow the visualization of selected
elements of a UML model [61]. A single UML element can
be part of multiple views, allowing developers to create
views of manually manageable size that focus on specific
aspects of the software system, such as a security-critical
dependency or a classified class member. Such views can
be extracted automatically, e.g., using model slicing [130],
[131] or clustering [132], [133]. Given appropriate slicing
rules or coupling criteria, both approaches can be used to
automatically retrieve all elements relevant to a developer
when inspecting a particular UML model element. Based on
these elements, an appropriate view can be created.

9 RELATED WORK

In this section, we discuss works that address similar issues
as UMLsecRT or provide alternative solutions that could be
used by UMLsecRT. We relate UMLsecRT to these works,
highlight differences, and focus in particular on the expres-
siveness of the security properties considered and the type
of monitoring used. First, we discuss security policy lan-
guages that could be used in UMLsecRT as an alternative to
UMLsec, second, general monitoring solutions upon which
UMLsecRT’s security monitor could be built, and finally,
other security monitoring approaches.

9.1 Security Policies Languages

Similar to UMLsec, other model-based languages such as
SecDFD [17] or SecBPMN [16] support the specification
and validation of security requirements at design time. For
both languages, we have already demonstrated integration
with UMLsec [43], [107], in particular with UMLsec’s secure
dependency, making it accessible to UMLsecRT as well.

In addition to model-based languages, several textual
security policy languages have been proposed. The Security
Policy Language (SPL) of Ribeiro et al. [29], allows to define
complex constraints for access policies. The SPL allows to
specify hierarchies of entity types and to define logical con-
straints based on a tri-value algebra (“allow”,“deny” and
“notapply”). Similarly, ConSpec [30], a formal language for
policy specification, allows to specify constraints on states
before and after events, e.g., on the values of variables.
While it is not possible to express UMLsec secure depen-
dency using ConSpec, it may be possible using SPL, but it is
likely to be too coarse-grained. Furthermore, such policies
are likely to grow in complexity, making them difficult
to manage. To address this issue, Bauer et al. propose a
composition mechanism for runtime security policies [134].

Siveroni et al. [135] researched the support of design
and verification of secure software systems, emphasizing
the early stages of development such as requirements elici-
tation. The proposed approach realizes static verification of
properties and allows reasoning about temporal and general
properties of a UML subset, e.g., UML state machines. For-
mal verification is performed using the SPIN model checker.
The approach focuses only on the early stages of software
design and thus only on statically verifiable properties.

9.2 Java Monitoring

In addition to the JVM Tool Interface (JVM TI), which is
used by Java agents such as UMLsecRT, the Java Platform
Debugger Architecture (JPDA) provides the Java Debugger
Interface (JDI) with a higher level of abstraction [136]. One
of the main advantages of this interface is that it allows a
clear separation between the application code and the moni-
toring code by eliminating the need for instrumentation that
dynamically writes the monitoring code into the application
code. However, execution of the smallest DaCapo case,
which took 3106 ms without security monitoring, took about
8 h with security monitoring by a prototype of UMLsecRT
based on the JDI, making this interface infeasible.

Another widely used technology for implementing ap-
proaches comparable to UMLsecRT is Aspect-Oriented Pro-
gramming [129]. For Java, frameworks such as AspectJ [137]
or Spring AOP [138] could be used for this purpose. How-
ever, as described in the discussion section, the security
aspects would be part of the implementation, which could
compromise the security of the system.

BeepBeep3 [139] allows to model the monitoring using
a block diagram like syntax, so called BeepBeep processors
and the older BeepBeep uses AspectJ to capture the program
trace and to verify them using linear temporal logic. Among
others, BeepBeep3 has been used for monitoring security
properties [31]. In our evaluation, we have shown in detail
why it is not possible or infeasible to express UMLsec Secure
Dependency using any of the two BeepBeep versions.

Similar to BeepBeep, Larva [76], [140] is an event-based
runtime monitoring approach that captures a sequence of
events and analyzes them. A domain-specific language
(DSL) allows you to specify which events to capture and
what conditions to place on variables and transitions. In
our evaluation, we have shown that UMLsec Secure De-
pendency can be checked using Larva when the security
annotations are provided in a different way. However, Larva
misses many unknown cases as all methods to check have to
be explicitly specified upfront and is vulnerable to CWE486.
Unlike other Java monitors, Larva allows the implementa-
tion of countermeasures comparable to UMLsecRT.

In general, besides BeepBeep and Larva, monitoring ap-
proaches based on languages for specifying what to monitor,
such as LOLA [141] or event based monitoring using a
temporal logic called HAWK [142], do not seem to be able
to handle additional input that provides information about
security requirements for specific source code elements. The
authors of BeepBeep compare it with the runtime monitor
for ConSpec [30], Java-MOP [143], and Java-MaC [144],
which provide similar expressiveness. They show a slow-
down for Larva and Java-MOP around a factor of 6 and
3.5 for the other two monitors for the simplest case, but
are not applicable to the other cases. Since the idea of
UMLsecRT is to avoid developers having to specify security
monitoring policies by simply following the security-by-
design approach of UMLsec, there is no need for a security
monitoring approach that provides a DSL for specifying
custom monitoring policies. Given the huge overhead of the
monitoring tools discussed, this argues for implementing
and optimizing the security monitor at a lower level, as we
have done for UMLsecRT.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

To address the inherent problem of high monitoring
overhead and to reduce the time required for runtime verifi-
cation of large programs, Bodden et al. distribute parts of the
runtime verification among a large number of users [128].
Instead of instrumenting the entire product, only a part of
the program is instrumented at a time. Regular expressions
are used to specify traces of unwanted behavior. The authors
implemented two variants, but still found a generally high
instrumentation overhead.

9.3 Security Monitoring

A widely studied category of security verification is taint
checking. Typically, data entering the system is consid-
ered as tainted and is not allowed to flow into sensitive
sinks [145]. Since taint analysis is a statically undecidable
problem, several approaches for runtime taint checking
have been proposed [146], [147], [148]. As part of the pro-
gramming language, it is declared what is tainted data, and
the underlying data structure is extended with a flag that
can be traced at runtime. Overall, the property considered in
taint checking is very close to UMLsec secure dependency,
but secure dependency considers control flow dependen-
cies and focuses on explicitly declaring security properties
of data. Since runtime taint checking requires significant
changes to programming languages and the execution en-
vironment, we are not aware of any approach that is widely
used in practice. Also, the problem of declaring what is
tainted data and what is sensitive data remains. In contrast,
UMLsecRT builds on established technologies and provides
automated configuration of the runtime monitor based on
established design-time security engineering approaches.

Lee et al. focused on inter-app communication in An-
droid, which can allow an attacker to inject arbitrary activ-
ities [149]. Finally, user interaction can be hijacked to break
the Android sandbox mechanism. Therefore, they propose
a static analysis tool that uses the operational semantics of
the activity lifecycle to reveal potential vulnerabilities. In
contrast, UMLsecRT aims to provide the developer with
a lightweight model extension to cover security risks in
early design phases, coupled with source code and runtime.
Our focus is on making security requirements available at
an abstract level such as the system model, as well as at
the implementation level to promote general awareness of
specific security requirements.

Ion et al. [150] examined the security policy architec-
ture of J2ME (Java for mobile devices), which, unlike Java
Standard Edition, does not provide an extensible security
architecture. They modified the J2ME VM to handle custom
security policies at runtime without significant overhead.
For security policy specification, they use the SPL [29]
discussed above. In contrast, UMLsecRT uses a Java agent
and therefore does not require any changes to the VM. By
incorporating model-based design, we help developers gain
additional knowledge about the behavior of runtime code.

Costa et al. present a more fine-grained and flexible
policy-based security mechanism for J2ME and implement
it in two variants [151]. First, similar to [150], by adapting
the J2ME VM, facing the problem that keywords in policies
are limited to methods that can be intercepted at fixed en-
forcement points. Second, based on byte code manipulation

before and after each call to the J2ME API. They found a
performance overhead of less than 5, while we achieve a
similar or even lower overhead in the long run, supporting
full Java and monitoring all accesses.

Hiet et. al propose to secure Java web applications by
monitoring information flows [152]. They extend Blare, an
OS-level intrusion detection tool, to implement policy-based
intrusion detection by tracing inter-method flows in Java
applications, supported by the JRE calling the Security Man-
ager before each I/O access. They encountered a slowdown
by factor 12 for loading and factor 4 for execution. Blare re-
quires a modified Linux kernel to run, while JBlare requires
a modified JRE, which are severe assumptions against the
target environment. Responding to or preventing violations,
as well as round-trip engineering, is not discussed.

Staicu et al. conducted a large-scale study of 235,850
Node.js applications and identified two APIs that give direct
system access [153]. They address this problem by first
building templates for all values passed to these APIs, and
then synthesizing a runtime policy to support monitoring,
which is integrated into the code through code rewriting.
They also support design time through static checks.

Ognawala et al. propose a mixture of concrete and sym-
bolic execution to detect non-trivial vulnerabilities [154].
They allow users to interactively examine calls and evaluate
possible vulnerabilities on a graphical representation. While
they focus on different types of vulnerabilities than we do,
they also conclude that an interactive, graphical vulnerabil-
ity report helps developers prioritize remediation activities.

10 CONCLUSION AND OUTLOOK

In this paper, we introduce UMLsecRT for propagating
model-based security planning to the code level, reducing
the effort required to annotate the code base and supporting
round-trip engineering by providing feedback on runtime
observations back to the models.

UMLsecRT supports reverse engineering of models from
source code and synchronization of security annotations
in models and source code. Response to detected security
issues is supported passively through call trace logging or
actively by providing modified return values to protect sen-
sitive application data. Round-trip engineering is supported
by feeding additional elements monitored during execution
back into the model and automatically generating attack
sequence diagrams to help developers investigate attacks
with graphical support and relationships to design-time
models. This also addresses system evolution detection.

We introduced UMLsecRT by implementing support for
dynamic checking of secure call dependencies with respect
to UMLsec secure dependency, which previously could only
be checked statically (and thus partially). UMLsecRT is
supported by a prototypical implementation that realizes
support at the source code level by providing Java secu-
rity annotations, runtime monitoring is provided by the
UMLsecRT Java agent, while model and code synchroniza-
tion is realized using triple graph grammars.

We have successfully applied our approach to the Eclipse
secure repository and iTrust. We evaluated UMLsecRT in
terms of effectiveness and applicability against real CWEs
and the DaCapo benchmark, and in terms of usability in

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 29

two user studies. The results show that UMLsecRT can be
used in realistic application scenarios.

Future work will primarily focus on a more efficient
implementation to reduce the current monitoring overhead
and thus increase the applicability in real-world environ-
ments. In addition, we aim to extend the evaluation by
supporting additional security properties and evaluating
off-the-shelf applications with real-world security issues. We
will also investigate the applicability of UMLsecRT to other
domains, such as safety or real-time processing guarantees.

ACKNOWLEDGEMENTS
The work presented in this article is part of the Ph.D.
theses of Sven Peldszus [107] and Jens Bürger [3]. This
work has been supported by the German Federal Ministry
of Education and Research (BMBF) in the project AI-NET-
PROTECT, and the German Research Foundation (DFG) in
the project TraceSEC (project number 500462081).

REFERENCES

[1] H. Assal and S. Chiasson, “Security in the Software Development
Lifecycle,” in SOUPS, 2018.

[2] J. Bürger, D. Strüber, S. Gärtner, T. Ruhroth, J. Jürjens, and
K. Schneider, “A Framework for Semi-automated Co-evolution
of Security Knowledge and System Models,” JSS, vol. 139, 2018.

[3] J. Bürger, “Recovering security in model-based software engi-
neering by context-driven co-evolution,” Ph.D. dissertation, Uni-
versity of Koblenz-Landau, 2019.

[4] M. Mirakhorli, M. Galster, and L. A. Williams, “Understanding
Software Security from Design to Deployment,” Softw. Eng. Notes,
vol. 45, no. 2, 2020.

[5] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic
Mapping Study on Security Approaches in Secure Software En-
gineering,” IEEE Access, vol. 9, 2021.

[6] “OWASP Top 10: A04:2021 – Insecure Design,” 2021. [Online].
Available: http://owasp.org/Top10

[7] M. Gegick and L. Williams, “On the Design of More Secure
Software-intensive Systems by Use of Attack Patterns,” Inf. Softw.
Technol., vol. 49, no. 4, 2007.

[8] J. Jürjens, “UMLsec: Extending UML for Secure Systems Devel-
opment,” in UML, 2002.

[9] J. P. Near and D. Jackson, “Derailer: Interactive Security Analysis
for Web Applications,” in ASE, 2014.

[10] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities
in Java Applications with Static Analysis,” in USENIX Security,
2005.

[11] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA:
Detecting Inter-component Privacy Leaks in Android Apps,” in
ICSE, 2015.

[12] B. Morin, T. Mouelhi, F. Fleurey, Y. Le Traon, O. Barais, and J.-M.
Jézéquel, “Security-driven Model-based Dynamic Adaptation,”
in ASE, 2010.

[13] L. Xiao, “An Adaptive Security Model Using Agent-oriented
MDA,” Inf. Softw. Technol., vol. 51, no. 5, 2009.

[14] M. Almorsy, J. Grundy, and A. S. Ibrahim, “MDSE@R: Model-
driven Security Engineering at Runtime,” in CSS, 2012.

[15] A. Shostack, Threat Modeling: Designing for Security. John Wiley
& Sons, 2014.

[16] M. Salnitri, F. Dalpiaz, and P. Giorgini, “Designing Secure Busi-
ness Processes with SecBPMN,” SoSyM, vol. 16, no. 3, 2017.

[17] K. Tuma, R. Scandariato, and M. Balliu, “Flaws in Flows: Un-
veiling Design Flaws via Information Flow Analysis,” in ICSA,
2019.

[18] S. Peldszus, J. Bürger, T. Kehrer, and J. Jürjens, “Ontology-Driven
Evolution of Software Security,” DKE, vol. 134, 2021.

[19] T. Hettel, M. Lawley, and K. Raymond, “Model synchronisation:
Definitions for round-trip engineering,” in ICMT, 2008.

[20] L. Nagowah, Z. Goolfee, and C. Bergue, “RTET - A Round Trip
Engineering Tool,” in ICoICT, 2013.

[21] A. H. Eden, E. Gasparis, J. Nicholson, and R. Kazman, “Round-
trip engineering with the Two-Tier Programming Toolkit,” Softw.
Qual. J., vol. 26, no. 2, 2018.

[22] K. Vanherpen, J. Denil, H. Vangheluwe, and P. De Meulenaere,
“Model Transformations for Round-Trip Engineering in Control
Deployment Co-Design,” in DEVS, 2015.

[23] L. Ben Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, and
A. D. Brucker, “Time for Addressing Software Security Issues:
Prediction Models and Impacting Factors,” Data Sci Eng, vol. 2,
no. 2, 2017.

[24] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An
Empirical Study of Static Call Graph Extractors,” TOSEM, vol. 7,
no. 2, 1998.

[25] D. Evans and D. Larochelle, “Improving Security using Extensi-
ble Lightweight Static Analysis,” IEEE Softw., vol. 19, no. 1, 2002.

[26] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE
Secur. Priv., vol. 2, no. 6, 2004.

[27] S. Chiba, “Load-time Structural Reflection in Java,” in ECOOP,
2000.

[28] B. Livshits, J. Whaley, and M. S. Lam, “Reflection Analysis for
Java,” in APLAS, 2005.

[29] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes, “SPL: An
Access Control Language for Security Policies and Complex
Constraints,” in NDSS, 2001.

[30] I. Aktug and K. Naliuka, “Conspec - A formal language for policy
specification,” Electron. Notes Theor. Comput. Sci., vol. 197, no. 1,
2008.

[31] M. R. Boussaha, R. Khoury, and S. Hallé, “Monitoring of security
properties using beepbeep,” in FPS, 2017.

[32] S. G. Shiva and S. Das, “CoRuM: Collaborative Runtime Monitor
Framework for Application Security,” in UCC, 2018.

[33] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java
Language Specification – Java Se 8 Edition, 2015.

[34] S. Mullan, “JEP 411: Deprecate the Java Security Manager for
Removal,” 2021.

[35] S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, and R. Scandariato,
“Secure Data-Flow Compliance Checks between Models and
Code based on Automated Mappings,” in MODELS, 2019.

[36] A. Apvrille and M. Pourzandi, “Secure Software Development
by Example,” IEEE Secur. Priv., vol. 3, no. 4, 2005.

[37] B. Best, J. Jürjens, and B. Nuseibeh, “Model-based security en-
gineering of distributed information systems using umlsec,” in
29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, USA, May 20-26, 2007, 2007.

[38] J. Jürjens, J. Schreck, and P. Bartmann, “Model-based Security
Analysis for Mobile Communications,” in ICSE, 2008.

[39] J. Lloyd and J. Jürjens, “Security Analysis of a Biometric Authen-
tication System using UMLsec and JML,” in MODELS, 2009.

[40] I. Christantoni, C. Biffi, and D. B. A. C. Sanz, “Vision pilots
reports,” VisiOn EU Project, Tech. Rep., 2017.

[41] S. Peldszus, A. S. Ahmadian, M. Salnitri, J. Jürjens, M. Pavlidis,
and H. Mouratidis, Visual Privacy Management. Springer, 2020,
ch. Visual Privacy Management, pp. 77–108.

[42] S. Gärtner, T. Ruhroth, J. Bürger, K. Schneider, and J. Jürjens,
“Maintaining Requirements for Long-living Software Systems by
Incorporating Security Knowledge,” in RE, 2014.

[43] A. S. Ahmadian, S. Peldszus, Q. Ramadan, and J. Jürjens, “Model-
based Privacy and Security Analysis with CARiSMA,” in FSE,
2017.

[44] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer et al., “The DaCapo Benchmarks: Java Benchmarking
Development and Analysis,” in OOPSLA, vol. 41, 2006.

[45] S. Heckman, K. T. Stolee, and C. Parnin, “10+ Years of Teaching
Software Engineering with iTrust: the Good, the Bad, and the
Ugly,” in ICSE-SEET, 2018.

[46] Eclipse Contributors, “Workbench User Guide – Se-
cure Storage – How Secure Storage Works,” The
Eclipse Foundation, Tech. Rep., 2013. [Online]. Avail-
able: https://help.eclipse.org/2020-06/index.jsp?topic=%2Forg.
eclipse.platform.doc.user%2Freference%2Fref-43.htm

[47] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic
Health Care System Case Study.” [Online]. Available: https:
//github.com/ncsu-csc326/iTrust2

[48] J. A. Estefan, “Survey of Model-based Systems Engineering
(MBSE) Methodologies,” Incose MBSE Focus Group, 2007.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://owasp.org/Top10
https://help.eclipse.org/2020-06/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-43.htm
https://help.eclipse.org/2020-06/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Freference%2Fref-43.htm
https://github.com/ncsu-csc326/iTrust2
https://github.com/ncsu-csc326/iTrust2

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ??, NO. ?, ???? ????

[49] S. Peldszus, “Model-driven Development of Evolving Secure
Software Systems,” in EMLS, 2020.

[50] H. Störrle, “How are Conceptual Models used in Industrial
Software Development?: A Descriptive Survey,” in EASE, 2017.

[51] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. To-
gashi, “Secure Design Patterns,” Carnegie-Mellon University
Pittsburgh, Software Engineering Institute, Tech. Rep., 2009.

[52] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A Catalog of
Security Architecture Weaknesses,” in ICSAW, 2017.

[53] J. Cawthra, M. Ekstrom, L. Lusty, J. Sexton, J. Sweetnam, and
A. Townsend, “Data Integrity:Identifying and Protecting Assets
Against Ransomware and Other Destructive Events,” NIST Spe-
cial Publication 1800-25A, 2020.

[54] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Math-
ematical Foundations,” MITRE, Tech. Rep., 1973.

[55] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Incremental
Co-Evolution of Java Programs based on Bidirectional Graph
Transformation,” in PPPJ, 2015.

[56] E. Leblebici, A. Anjorin, and A. Schürr, “Inter-model Consistency
Checking Using Triple Graph Grammars and Linear Optimiza-
tion Techniques,” in FASE, 2017.

[57] A. Schürr, “Specification of Graph Translators with Triple Graph
Grammars,” in WG, 1994.

[58] E. Leblebici, A. Anjorin, and A. Schürr, “Developing eMoflon
with eMoflon,” in ICMT, 2014.

[59] K. Tuma, S. Peldszus, D. Strüber, R. Scandariato, and J. Jürjens,
“Checking Security Compliance between Models and Code,”
SoSyM, 2022.

[60] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, “The Java®
Virtual Machine Specification,” Oracle, Tech. Rep., 2015.

[61] Object Management Group (OMG), “UML 2.5.1 Superstructure
Specification,” 2017.

[62] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors,” IEEE Secur.
Priv., vol. 3, no. 6, pp. 81 – 84, 2005.

[63] S. Peldszus, J. Bürger, and J. Jürjens, “UMLsecRT Replication
Package,” 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.8387495

[64] “Eclipse,” 2019. [Online]. Available: https://eclipse.org/
[65] eMoflon Developer Team, “eMoflon – A tool for building tools,”

2019. [Online]. Available: http://emoflon.org/
[66] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A

Generic and Extensible Framework for Model driven Reverse
Engineering,” in ASE, 2010.

[67] The Eclipse Foundation, “MoDisco,” 2018. [Online]. Available:
https://eclipse.org/MoDisco/

[68] ——, “Papyrus Modeling Environment,” 2019. [Online].
Available: https://eclipse.org/papyrus/

[69] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard,
P. Tessier, R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus
UML: An Open Source Toolset for MDA,” in ECMDA-FA, 2009.

[70] J. Jürjens et al., “CARiSMA,” 2018. [Online]. Available:
http://carisma.umlsec.de/

[71] S. Chiba, “Javassist,” 2019. [Online]. Available: https://www.
javassist.org

[72] Oracle, “Java Agent API,” 2019. [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/api/java/lang/
instrument/package-summary.html

[73] M. Corporation, “Common Weakness Enumeration,” 2019.
[Online]. Available: https://cwe.mitre.org

[74] “Juliet Test Suite v1.2 for Java – User Guide,” Center for Assured
Software National Security Agency, Tech. Rep., 2012.

[75] P. E. Black, “Juliet 1.3 Test Suite: Changes From 1.2,” National
Institute of Standards and Technology (NIST), Tech. Rep., 2018.

[76] C. Colombo, G. J. Pace, and G. Schneider, “LARVA — Safer
Monitoring of Real-time Java Programs,” in SEFM, 2009.

[77] S. Halle and R. Villemaire, “Runtime Monitoring of Message-
Based Workflows with Data,” in EDOC, 2008.

[78] S. Hallé, “A Small Demo: mMnitoring Java Programs
with BeepBeep,” 2011. [Online]. Available: https://beepbeep.
sourceforge.net/java-monitor/tour.php

[79] W. Group, “OpenJDK Issue 8155588,” 2016. [Online]. Available:
https://bugs.openjdk.java.net/browse/JDK-8155588

[80] “DaCapo Benchmark,” 2018. [Online]. Available: https://
dacapobench.sourceforge.net/

[81] Apache Foundation, “Tomcat.” [Online]. Available: https:
//tomcat.apache.org/

[82] H. Störrle, “On the Impact of Size to the Understanding of UML
Diagrams,” SoSyM, vol. 17, no. 1, 2018.

[83] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur,
“DECOR: A Method for the Specification and Detection of Code
and Design Smells,” TSE, vol. 36, no. 1, 2010.

[84] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “BD-
TEX: A GQM-based Bayesian Approach for the Detection of
Antipatterns,” JSS, vol. 84, no. 4, 2011.

[85] Z. Ujhelyi, A. Horváth, D. Varró, N. I. Csiszár, G. Szőke, L. Vidács,
and R. Ferenc, “Anti-pattern Detection with Model Queries: A
Comparison of Approaches,” in CSMR-WCRE, 2014.

[86] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze, “Continuous
Detection of Design Flaws in Evolving Object-Oriented Programs
using Incremental Multi-pattern Matching,” in ASE, 2016.

[87] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studies,” in APSEC, 2010.

[88] C. Alphonce and P. Ventura, “QuickUML: A Tool to Support
Iterative Design and Code Development,” in OOPSLA, 2003.

[89] G. Johnson, “QuickUML.” [Online]. Available: https://quj.
sourceforge.io/

[90] J. D. Lamb, “Java Scientific Calculator (JSciCalc).” [Online].
Available: http://jscicalc.sourceforge.net/

[91] E. Gamma, K. Beck et al., “JUnit.” [Online]. Available:
https://junit.org/

[92] Oracle, “JSSE Reference Guide,” Tech. Rep. [Online].
Available: https://docs.oracle.com/javase/8/docs/technotes/
guides/security/jsse/JSSERefGuide.html

[93] ——, “OpenJDK.” [Online]. Available: https://openjdk.org
[94] A. Thomas, D. Barashev et al., “GanttProject.” [Online]. Available:

https://ganttproject.biz/
[95] Apache Foundation, “Nutch.” [Online]. Available: http://nutch.

apache.org/
[96] ——, “Lucene.” [Online]. Available: https://lucene.apache.org/
[97] ——, “Log4j.” [Online]. Available: https://logging.apache.org
[98] IFA Informatik and E. Gamma, “JHotDraw.” [Online]. Available:

https://sourceforge.net/projects/jhotdraw/
[99] A. Dangel, J. Sotuyo et al., “PMD Source Code Analyzer.”

[Online]. Available: https://sourceforge.net/projects/pmd/
[100] S. Pestov et al., “JEdit.” [Online]. Available: http://jedit.org/
[101] P. Wendykier, “JTransforms.” [Online]. Available: https://sites.

google.com/site/piotrwendykier/software/jtransforms
[102] “JabRef.” [Online]. Available: https://jabref.org
[103] Apache Foundation, “Xerces.” [Online]. Available: http://xerces.

apache.org/
[104] “ArgoUML.” [Online]. Available: https://argouml-tigris-org.

github.io/
[105] D. Gilbert, “JFreeChart.” [Online]. Available: https://jfree.org/

jfreechart/
[106] Azureus Software Inc., “Azureus/Vuze.” [Online]. Available:

http://vuze.com/
[107] S. Peldszus, “Security Compliance in Model-driven Develop-

ment of Software Systems in Presence of Long-Term Evolution
and Variants,” Ph.D. dissertation, University of Koblenz-Landau,
2022.

[108] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, Guide to Advanced
Empirical Software Engineering. Springer, 2008, ch. Reporting
Experiments in Software Engineering.

[109] R. McCarney, J. Warner, S. Iliffe, R. van Haselen, M. Griffin,
and P. Fisher, “The Hawthorne Effect: A Randomised, Controlled
Trial,” BMC Med Res Methodol, vol. 7, no. 30, 2007.

[110] P. Runeson and M. Höst, “Guidelines for Conducting and Re-
porting Case Study Research in Software Engineering,” EMSE,
vol. 14, no. 131, 2009.

[111] A. K. Massey, P. N. Otto, L. J. Hayward, and A. I. Antón, “Evalu-
ating Existing Security and Privacy Requirements for Legal Com-
pliance,” Requirements Engineering Journal (RE), vol. 15, pp. 119–
137, 2010, Special Issue—Security Requirements Engineering.

[112] J. Bürger, S. Gärtner, T. Ruhroth, J. Zweihoff, J. Jürjens, and
K. Schneider, “Restoring Security of Long-living Systems by Co-
evolution,” in COMPSAC, vol. 2, 2015.

[113] W. Zogaan, P. Sharma, M. Mirahkorli, and V. Arnaoudova,
“Datasets from Fifteen Years of Automated Requirements Trace-
ability Research: Current State, Characteristics, and Quality,” in
RE, 2017.

[114] N. Iscoe, G. Williams, and G. Arango, “Domain Modeling for
Software Engineering,” in ICSE, 1991.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.5281/zenodo.8387495
https://doi.org/10.5281/zenodo.8387495
https://eclipse.org/
http://emoflon.org/
https://eclipse.org/MoDisco/
https://eclipse.org/papyrus/
http://carisma.umlsec.de/
https://www.javassist.org
https://www.javassist.org
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://cwe.mitre.org
https://beepbeep.sourceforge.net/java-monitor/tour.php
https://beepbeep.sourceforge.net/java-monitor/tour.php
https://bugs.openjdk.java.net/browse/JDK-8155588
https://dacapobench.sourceforge.net/
https://dacapobench.sourceforge.net/
https://tomcat.apache.org/
https://tomcat.apache.org/
https://quj.sourceforge.io/
https://quj.sourceforge.io/
http://jscicalc.sourceforge.net/
https://junit.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://openjdk.org
https://ganttproject.biz/
http://nutch.apache.org/
http://nutch.apache.org/
https://lucene.apache.org/
https://logging.apache.org
https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/pmd/
http://jedit.org/
https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms
https://jabref.org
http://xerces.apache.org/
http://xerces.apache.org/
https://argouml-tigris-org.github.io/
https://argouml-tigris-org.github.io/
https://jfree.org/jfreechart/
https://jfree.org/jfreechart/
http://vuze.com/

PELDSZUS ET AL.: REACTIVE SECURITY MONITORING OF JAVA APPLICATIONS WITH ROUND-TRIP ENGINEERING 31

[115] B.-J. Kim and S.-W. Lee, “Understanding and Recommending
Security Requirements from Problem Domain Ontology: A Cog-
nitive Three-Layered Approach,” JSS, vol. 169, 2020.

[116] A. Souag, C. Salinesi, I. Wattiau, and H. Mouratidis, “Using
Security and Domain Ontologies for Security Requirements Anal-
ysis,” in COMPSACW, 2013.

[117] S. S. Heckman and K. Presler-Marshall, “Requirements of
the iTrust Electronic Health Care System.” [Online]. Available:
https://github.com/ncsu-csc326/iTrust2/wiki/requirements

[118] K. Fakhroutdinov, “Hospital Management,” UML-Diagrams.
[Online]. Available: https://UML-diagrams.org/examples/
hospital-domain-diagram.html

[119] T. A. Wagner and S. L. Graham, “Efficient and Flexible Incremen-
tal Parsing,” ACM Trans. Program. Lang. Syst., vol. 20, no. 5, 1998.

[120] M. Brunsfeld et al., “TreeSitter,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7798573

[121] B. Rumpe, Agile Modeling with UML: Code Generation, Testing,
Refactoring, 2017.

[122] International Organization for Standardization (ISO), “Medical
Device Software — Software Life Cycle Processes,” International
Standard IEC 62304:2006, 2007.

[123] Pivotal Software, “Spring Framework,” 2019. [Online]. Available:
http://spring.io

[124] FasterXML, “Jackson,” 2019. [Online]. Available: https://github.
com/FasterXML/jackson

[125] S. Peldszus, D. Strüber, and J. Jürjens, “Model-Based Security
Analysis of Feature-Oriented Software Product Lines,” in GPCE,
2018.

[126] “EU Project Page: Visual Privacy Management in User
Centric Open Environments (VisiOn),” 2016. [Online]. Available:
https://doi.org/10.3030/653642

[127] P. Dewitte, K. Wuyts, L. Sion, D. V. Landuyt, I. Emanuilov,
P. Valcke, and W. Joosen, “A Comparison of System Description
Models for Data Protection by Design,” in SAC, 2019.

[128] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem,
“Collaborative Runtime Verification with Tracematches,” in RV,
2007.

[129] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin, “Aspect-oriented Programming,”
in ECOOP, 1997.

[130] J. T. Lallchandani and R. Mall, “A Dynamic Slicing Technique for
UML Architectural Models,” TSE, vol. 37, no. 6, 2011.

[131] G. Taentzer, T. Kehrer, C. Pietsch, and U. Kelter, “A Formal
Framework for Incremental Model Slicing,” in FASE, ser. Lecture
Notes in Computer Science (LNCS), vol. 10802, 2018.

[132] R. Xu, D. Wunsch et al., “Survey of Clustering Algorithms,” IEEE
Trans. Neural Netw., vol. 16, no. 3, 2005.

[133] A. Elkamel, M. Gzara, and H. Ben-Abdallah, “An UML Class
Recommender System for Software Design,” in AICCSA, 2016.

[134] L. Bauer, J. Ligatti, and D. Walker, “Composing Expressive Run-
time Security Policies,” TOSEM, vol. 18, no. 3, 2009.

[135] I. Siveroni, A. Zisman, and G. Spanoudakis, “A UML-based Static
Verification Framework for Security,” RE, vol. 15, no. 1, 2010.

[136] Oracle, “Java Debug Interface (JDI).” [Online].
Available: https://docs.oracle.com/javase/8/docs/technotes/
guides/jpda/architecture.html#jdi

[137] The Eclipse Foundation, “Aspect J.” [Online]. Available:
https://eclipse.org/aspectj/

[138] R. Johnson, J. Hoeller, K. Donald et al., The Spring
Framework - Reference Documentation, 2022, ch. Aspect Oriented
Programming with Spring. [Online]. Available: https://docs.
spring.io/spring-framework/docs/2.5.5/reference/aop.html

[139] S. Hallé, “When RV meets CEP,” in RV, 2016.
[140] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic event-based

runtime monitoring of real-time and contextual properties,” in
FMICS, 2008.

[141] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA:
Runtime Monitoring of Synchronous Systems,” in TIME, 2005.

[142] M. d’Amorim and K. Havelund, “Event-based Runtime Verifica-
tion of Java Programs,” Softw. Eng. Notes, vol. 30, no. 4, 2005.

[143] F. Chen and G. Rosu, “Java-MOP: A Monitoring Oriented Pro-
gramming Environment for Java,” in TACAS, 2005.

[144] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky,
“Java-MaC: A Run-Time Assurance Approach for Java Pro-
grams,” Formal Methods Syst. Des., vol. 24, no. 2, 2004.

[145] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps,” in PLDI, 2014.

[146] V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propaga-
tion for Java,” in ACSAC, 2005.

[147] J. Kong, C. C. Zou, and H. Zhou, “Improving Software Security
via Runtime Instruction-Level Taint Checking,” in ASID, 2006.

[148] J. Kreindl, D. Bonetta, L. Stadler, D. Leopoldseder, and
H. Mössenböck, “Low-Overhead Multi-Language Dynamic Taint
Analysis on Managed Runtimes through Speculative Optimiza-
tion,” in MPLR, 2021.

[149] S. Lee, S. Hwang, and S. Ryu, “All about Activity Injection:
Threats, Semantics, and Detection,” in ASE, 2017.

[150] I. Ion, B. Dragovic, and B. Crispo, “Extending the Java Virtual
Machine to Enforce Fine-Grained Security Policies in Mobile
Devices,” in ACSAC, 2007.

[151] G. Costa, F. Martinelli, P. Mori, C. Schaefer, and T. Walter, “Run-
time Monitoring for Next Generation Java ME Platform,” Comput.
Secur., vol. 29, no. 1, 2010.

[152] G. Hiet, V. V. T. Tong, L. Me, and B. Morin, “Policy-based
Intrusion Detection in Web Applications by Monitoring Java
Information Flows,” in CRiSIS, 2008.

[153] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE Under-
standing and Automatically Preventing Injection Attacks on
NODE.JS,” NDSS, 2018.

[154] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer, “Macke:
Compositional Analysis of Low-level Vulnerabilities with Sym-
bolic Execution,” in ASE, 2016.

Sven Peldszus received a Ph.D. from the Uni-
versity of Koblenz-Landau for his dissertation
on Security Compliance in Model-Driven Devel-
opment of Software Systems in the Presence
of Long-Term Evolution and Variants and was
awarded the CAST/GI Dissertation Prize for the
best German IT security dissertation. His re-
search interests include continuous tracing and
verification of non-functional requirements and
model-based quality analysis for critical domains
such as autonomous vehicles. He is currently a

postdoctoral researcher at the Ruhr University Bochum.

Jens Bürger wrote his dissertation on the topic
of recovering security in model-based software
engineering by context-driven co-evolution. He
received a Ph.D. degree from the University of
Koblenz-Landau. Currently, he is working as an
IT Consultant at the Conciso GmbH in Dort-
mund, Germany.

Jan Jürjens is a professor for software engi-
neering at the University of Koblenz and director
research projects at the Fraunhofer Institute for
Software and Systems Engineering (ISST) in
Dortmund. He is the author of the book "Se-
cure Systems Development with UML" (Springer
2005, Chinese translation in 2009).

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3326366

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/ncsu-csc326/iTrust2/wiki/requirements
https://UML-diagrams.org/examples/hospital-domain-diagram.html
https://UML-diagrams.org/examples/hospital-domain-diagram.html
https://doi.org/10.5281/zenodo.7798573
http://spring.io
https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson
https://doi.org/10.3030/653642
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/architecture.html#jdi
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/architecture.html#jdi
https://eclipse.org/aspectj/
https://docs.spring.io/spring-framework/docs/2.5.5/reference/aop.html
https://docs.spring.io/spring-framework/docs/2.5.5/reference/aop.html

	Introduction
	Background
	Running Example
	Attacker Model
	Attacker Intent
	Attacker Capabilities

	UMLsec Secure Dependency
	Example of a Security Violation
	Synchronization between Models and Code

	Runtime Enforcement of UMLsec Secure Dependency
	Specification of Security Properties
	Security Annotations
	Synchronization with UML Models

	Verification at Runtime
	Countermeasures

	Automated System Adaptation
	Addition of missing Elements
	Documentation of Security Violations

	Tool Support
	Java Annotations and IDE Support
	Synchronization of UML Models with Source Code
	Validation at Runtime and Countermeasures
	Detecting System Evolution Automatically

	Evaluation
	RQ1–Effectiveness of the Security Monitor
	Setup
	Results

	RQ2–Applicability of the Security Monitor
	Setup
	Results

	RQ3–Monitoring Overhead and Influencing Factors
	Setup
	Results

	RQ4–Usefulness of the Supported Countermeasures and Adaptations of Design Models
	Setup
	Results

	RQ5–Scalability of the Model Synchronization
	Setup
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Case Studies
	Eclipse Secure Storage
	Reverse Engineering of Models
	Static Security Specification
	Runtime Monitoring

	iTrust Electronics Health Management System
	Requirements Engineering
	Software Architecture and Security Modeling
	Implementation
	Runtime Monitoring

	Discussion
	Related Work
	Security Policies Languages
	Java Monitoring
	Security Monitoring

	Conclusion and Outlook
	References
	Biographies
	Sven Peldszus
	Jens Bürger
	Jan Jürjens

