Fast, Favorable, and Fair Blockchain-based
Exchange of Digital Goods using State Channels

Matthias Lohr*, Sven Peldszus', Jan Jl'jrjens*§, Steffen Staab®¥
*Institute for Software Technology, University of Koblenz, Koblenz, Germany
tChair for Software Engineering, Ruhr University Bochum, Bochum, Germany
iqunhofer Institute for Software and Systems Engineering 1SST, Dortmund, Germany
§Analyz‘ic Computing, Institute for Artificial Intelligence, University of Stuttgart, Stuttgart, Germany
TWeb and Internet Science Research Group, University of Southampton, Southampton, United Kingdom

Abstract—When exchanging data with an untrusted coun-
terpart, there is a risk that the counterpart will not behave
honestly. Fair exchange protocols provide fairness guarantees to
involved parties, e.g., by employing blockchains as trusted third
parties. However, blockchain transaction fees and block creation
times render such protocols expensive and slow. Furthermore,
grieving attacks impose the risk of significant unilateral costs.
To improve on all three, we propose a state channel-based
fair exchange protocol with a mechanism to prevent grieving
attacks. Our protocol lowers the cost of repeating exchanges
and increases performance while preserving security guarantees
of state-of-the-art fair exchange protocols. Using the Ethereum
blockchain and the Perun state channel framework, we evaluate
our protocol with regard to cost and performance showing
significant improvements in comparison to the state-of-the-art.

Index Terms—Fair Exchange, Grieving Attack, Blockchain,
State Channel, Smart Contract

I. INTRODUCTION

In electronic commerce, fair exchange protocols [1], [2] can
reduce the risk of being cheated by unknown parties, e.g.,
when selling data over the Internet. Fair exchange protocols
require a trusted third party, which moderates the exchange
and enforces fairness [3], [4]. Typical examples of such a
trusted third party are central institutions such as notaries.
Recent research has shown the possibility of implementing
a decentralized trusted third party in the form of a smart con-
tract, eliminating the risk of being cheated by a compromised
centralized trusted third party.

State-of-the-art blockchain-based fair exchange protocols
[5]-[9] usually only consider the goods to be exchanged for
the fairness assessment, but ignore the costs due to the trusted
third party, e.g., blockchain transaction fees. Interacting with
a blockchain smart contract can raise non-negligible costs, as
shown by Lohr et al. [10]. Furthermore, current blockchain-
based fair exchange protocols are open to grieving attacks [7],
[11], which can cause high costs for the faithful party, with
the exchange formally still being considered fair.

For practical use in an industrial context, security, cost, and
performance are the most significant aspects of an application.
Particularly, our industry partners emphasized the need for
frequent repeated exchanges. Thus, to use a blockchain-based
fair exchange protocol in an industrial context, the cost must
be reasonable, and, therefore must be included in the consid-

eration, in particular when costs occur repeatedly. In addition,
risks that lead to unreasonably high costs, such as a successful
grieving attack, must be mitigated. At the same time, it must be
ensured that the application provides reasonable performance,
e.g., low-latency and high-frequency data exchanges.

Since most blockchain-based fair exchange protocols have
never progressed beyond prototype status, we are not aware
of any blockchain-based fair exchange protocol meeting
the requirements above. In principle, cost of smart contract
execution can be reduced while simultaneously increasing
performance of a smart contract using so-called state channels
[12]-[14] as already outlined by Dziembowski et al. [6], but
the possible extent of the improvement is unclear. There exist
works (e.g., [15]) which investigate and evaluate the effect
of state channels on existing blockchain applications, but we
could not find any work in this context related to fair exchange.
Furthermore, using state channels alone does not affect the
vulnerability to grieving attacks. To fill this gap, we introduce
FairSCE, a state channel-based fair exchange protocol. To this
end, we pose and answer the following research questions:

RQq: How can grieving attacks against a blockchain-based
fair exchange protocol be prevented?

RQ;: Which cost reduction can be achieved using state
channels for a blockchain-based fair exchange protocol?

RQj3: Which performance improvement can be achieved
using state channels for a fair exchange protocol?

To answer the research questions, we contribute:

1) FairSCE, a blockchain-based two-party fair exchange
protocol, based on FairSwap [6], using state channels and
providing a proof-of-concept implementation [16] for the
Ethereum blockchain [17] using Perun [14].

2) Extra Deposit, a wrapper contract allowing to preventing
grieving attacks for two-party contracts.

3) A comparative evaluation regarding cost and execution
time comparing the proposed FairSCE protocol to the
original FairSwap [6] protocol and of the Extra Deposit.

In Section II, we present the foundations for our work. In
Section III, we present FairSCE, a two-party fair exchange
protocol with grieving attack protection and discuss its
security in Section IV. We evaluate FairSCE and compare it
to FairSwap in Section V. Finally, we conclude in Section VII.

II. BACKGROUND
A. Blockchain Smart Contracts

Blockchains [18] are distributed append-only data structures
in which state changes are published by appending blocks,
which are mutually validated by other participants against a set
of rules. Due to the append-only characteristics, it is always
possible to consecutively track and validate all state changes.

The rule set for valid state changes can either be part of the
blockchain specification (e.g., metadata constraints) or user-
defined in the form of a smart contract, a program stored
on the blockchain. This way, complex rules for valid blocks
can be defined. For example, the Ethereum blockchain [17]
provides the Ethereum Virtual Machine (EVM), a Turing-
complete environment to execute smart contracts. Whenever a
smart contract is executed, all execution parameters are stored
on the blockchain. Thus, state changes in the smart contract
remain traceable and can be verified by anyone. The usage
of the blockchain (e.g., sending transactions) comes with fees
that are measured in Gas and calculated on the base of the
complexity of the transaction to be executed.

B. FairSwap

For several two-party fair exchange protocols, proof-of-
concept smart contracts (FairSwap [6], OptiSwap [7], Smart-
Judge [8], FastSwap [9], etc.) were published, in which the
blockchain acts as a trusted third party. To increase the
applicability of our work, we chose FairSwap as reference
protocol since, to the best of our knowledge, it is the first
blockchain-based protocol providing the guarantee for a fair
exchange, and many other works use or are based on FairSwap.

The FairSwap [6] protocol defines a sequence of states to
ensure a fair exchange of a good, e.g., a file, to a buyer [6].
Pracically, they apply the Hash Timelock Contract (HTLC)
[19] pattern. As shown in Fig. 1, a seller sends an encrypted
file to a buyer and registers the hashes of the plain file, the
encrypted file, and the key needed for decryption in a smart
contract (Initialized). After validating the registered data, the
buyer sends the payment (in the form of cryptographic funds)
to the smart contract (Accepted), causing the seller to release
the decryption key to the smart contract (Key Revealed). If
the seller sends wrong information (wrong file or key), using
the information registered in the smart contract, the buyer
can send a complaint to the smart contract to reclaim the
payment. If the buyer falsely tries to accuse the seller, the
same information can be used to detect and discard an invalid
complaint. The seller can claim the payment after a timeout,
in which no valid complaint has been sent.

.—)Enilialize@—)@\ccepte@—)ﬁ(ey Reveale@—){SuccessfuJ ComplainQ—)@

Seller has
made key
available to
buyer

Buyer has
successfully
complained to
smart contract

Seller has
initialized
the transfer

Buyer has
accepted
the transfer

Fig. 1. FairSwap protocol [6] state chart.

Dziembowski et al. have proven the security and fairness
of FairSwap according to the fairness definition of Asokan

[1], which only considers the file to be exchanged and the
payment. The fairness assessment lacks consideration of pro-
tocol execution cost, which arise for both seller and buyer. A
FairSwap protocol execution requires at least four blockchain
interactions, whereby the initialization by the seller is the
most expensive one with a transaction fee of approximately
1,500,000 Gas (approx. 140 USD as of Dec. 1%, 2023).

C. State Channels

Instead of sending each transaction to a blockchain, interacting
parties (e.g., using a fair exchange protocol) can collect trans-
actions off-chain in a so-called state channel and only send
one aggregated transaction to the blockchain. Thereby, the
state channel preserves the security guarantees of a blockchain.
This way, waiting times for the blockchain and transaction fees
can be avoided. As long as all parties behave faithfully, only
the blockchain transactions required to register the aggregated
transaction must be waited for and paid. In case of a dispute,
the state channel resolves the dispute by on-chain execution.

State channels can execute arbitrarily complex smart con-
tracts, usually providing cost savings and increased perfor-
mance compared to on-chain execution [13]. Referring to
Bitcoin and Ethereum as layer-one blockchains, state channels
can be seen as layer-two blockchains [12]. Several state
channel concepts have been proposed, such as Perun [14], the
Connext Network [20] and the statechannels.org initiative [21].

We focus on Perun, as it is the most mature framework
and the only one provided with formal proof of its cor-
rectness and security, having a ready-to-use smart contract
implementation [14]. It consists of two main smart contracts.
First, the AssetHolder smart contract provides the functionality
to open a Perun state channel, deposit funds (initialization),
and distribute the deposited funds according to the final state
(settlement). Second, the Adjudicator smart contract, which
is called by the AssetHolder smart contract for retrieving the
final fund distribution, provides functionality to register the
final state and a dispute mechanism. The Adjudicator decides
disputes based on an application-specific smart contract called
app that provides a set of accepted states and state changes. A
Perun state channel passes through the following four phases:

1) Open: When creating a new state channel, all partici-
pants agree on the initial state, comprising the initial balances
of funds, by mutually signing this state (off-chain, using direct
communication, e.g., via the Internet). Afterwards, on-chain
transactions are conducted to register the state channel by
sending these initial funds to the AssetHolder smart contract.

2) Transact: The app is executed and the channel partic-
ipants communicate state changes off-chain. This is realized
by consecutively exchanging signed off-chain messages con-
taining the state of the app and the changed amount of funds.

3) Finalize: At any point in time, channel participants can
request to close the state channel (e.g., to initiate a payoff) and
to determine the final app state. In case of mutual consensus,
all participants sign the final app state off-chain and send it
to the Adjudicator smart contract. Otherwise, the final state
is determined by executing the app on-chain as part of a

dispute. Each participant registers its final app state with the
Adjudicator, which verifies the registered states by calling the
app smart contract and bindingly decides on the final state.
4) Settle: After determining the final app state, participants
can request a payoff of the funds previously deposited accord-
ing to the fund’s distribution defined by the final app state.

D. Grieving Attacks

A grieving attack is particularly relevant in the context of
fair exchange protocols, such as FairSwap [6]. In a grieving
attack, an attacking party performs actions to the disadvantage
of another party (e.g., causing cost for the attacked party)
without suffering disadvantages (e.g., own cost) themselves
[7], [11]. For example, in FairSwap, a buyer can conduct a
grieving attack by requesting a fair exchange through a direct
communication channel with the seller at no or negligible cost.
According to the FairSwap protocol, the seller initializes the
fair exchange by deploying an instance of the FairSwap smart
contract to a blockchain with non-negligible costs. If the buyer
leaves the exchange with no further interaction, the seller has
to bear the cost alone while the attacking buyer has no cost.

III. FAIR EXCHANGE OF DIGITAL GOODS USING
BLOCKCHAIN STATE CHANNELS

To the best of our knowledge, existing fair exchange protocols
usually do not consider practical scenarios with simultaneous
and fast-repeated execution but reside on a conceptual basis,
in some cases, along with formal proof of their security
guarantees. This leads to a general lack of evaluation and
experience on the cost and performance of blockchain-based
fair exchange protocols under practical application conditions.
Furthermore, grieving attacks are still an open threat.

To this end, we present FairSCE, a blockchain-based two-
party fair exchange protocol with grieving attack protection,
which aims for low cost and high performance. FairSCE is
based on FairSwap [6], which simultaneously serves as a
reference for cost and performance comparison with FairSCE.
FairSCE uses the Perun state channel framework [14] and
consists of two smart contracts: the Extra Deposit contract for
grieving attack prevention and the app smart contract for re-
peated fair exchanges in a state channel. We provide its imple-
mentation, evaluation code, and all evaluation data [16], [22].

A. Extra Deposit Smart Contract

In FairSwap, a grieving attack can be conducted by the buyer
by requesting the seller to deploy the smart contract, which
causes significant cost. If the buyer deposited a security deposit
prior to his fair exchange request, this deposit could be used to
compensate the seller. However, since in typical blockchains
such as the Ethereum blockchain [17], creating a security
deposit also raises costs, it would enable the other party to
carry out a grieving attack by first demanding a security
deposit and then leaving the protocol itself.

To prevent grieving attacks for blockchain-based
interactions that use a deposit mechanism, we introduce the
concept of a reusable Extra Deposit contract that wraps around

Distribute; Ledger Seller

deploy()
deposit(funds $)

Buyer

<
<
<
<

initFairExchange(funds $) o

=:| buyer and seller conduct a fair exchange |=:

N

optional

alt)

deposit(funds $)
withdraw()

$

A A

Fig. 2. Extra Deposit smart contract wrapping a fair exchange protocol.

a smart contract to be protected against a grieving attack. This
Extra Deposit smart contract is deployed in addition to the
unmodified wrapped smart contract and offers the possibility
to provide all deposits to the wrapped smart contact in
the same transaction. As shown in Fig. 2, a party with the
intention to perform many exchanges with different parties
sets up the Extra Deposit with some funds to be used as the
seller’s deposit for upcoming exchanges. Buyers intending to
start a fair exchange can request funds from the Extra Deposit
to be transferred to the wrapped smart contract by providing
their deposit with the request. This way, the expenses of an
attacked party can be refunded in case the other party executes
a grieving attack. The Extra Deposit smart contract only needs
to be deployed a single time. Therefore, for repeated execution,
the deployment cost of Extra Deposit can be neglected. For
further exchanges, the seller might need to deposit additional
funds, as for each fair exchange initialization funds are
transferred to the wrapped fair exchange smart contract. In
the case of no buyer requests a fair exchange, the seller has
the possibility to eventually withdraw his deposits.

B. Reusable Fair Exchange Smart Contract

As the purpose of a Perun state channel is to determine
the final funds distribution according to a state channel app
execution, we have to identify the computations made to find
the final fund’s distribution. These computations are reflected
by the state transitions of FairSwap in which the final fund’s
distribution changes (see Fig. 1). Based on these transitions,
we introduce the app contract and its embedding in Perun.
a) Fair Swap Transitions relevant for Perun: To design
the state channel app, we need to identify the fund’s dis-
tribution changing transitions of FairSwap. Listing 1 shows
excerpts of the validation logic. Other transitions, such as
initialization and settlement are covered by Perun itself. Two
transitions change the fund’s distribution in FairSwap:
Accepted — Key Revealed. In FairSwap, the buyer sends
funds for the payment to the FairSwap smart contract as part
of the acceptance of the exchange parameters. After revealing
the key, the seller (in case of no further action from the buyer)
is now able to claim more funds than before, this represents
a change in the fund’s distribution. Lines 7-9 of Lst. 1 show
how this state transition is validated by checking if the revealed

I function validTransition(State cur, State next, ID caller):
2 if(cur.appState == REVEALED && next.appState == COMPLAINT):
... /] code to verify app state transition "Key Revealed” to "Complaint”
elif(cur.appState == ACCEPTED && next.appState == REVEALED):
5 assert(caller == SELLER)
assert(cur.values == next.values) // check price and the hashes of plain file,
encrypted file, and key for changes
assert(hash(next.key) == next.keyHash)) / key matches key hash
assert(next.funds[0] == cur.funds[0] + next.price) // seller funds
assert(next.funds[1] == cur.funds[1] — next.price) // buyer funds
else revert(”invalid state transition”)

Listing 1. Validation of app state transitions as part of a dispute.

key matches its previously agreed on hash and that the fund’s
distribution has changed by exactly the agreed on price.

Key Revealed — Successful Complaint. When the buyer can
prove that the seller sent the wrong file key (called complaint
[6]) the eligibility for the seller to request the payment for
that exchange is revoked. This is realized in lines 2-3 of
Lst. 1 similar to above. Since a successful complaint reduces
the amount of funds the seller is eligible to claim, this also
represents a change in the fund’s distribution.

In FairSwap, the funds distribution does not change in the
transition [Initialized—Accepted, since the buyer is still in
control of the funds he sent and can request a refund until the
seller reveals the key. Hence, for the adaptation of FairSwap
to the app smart contract, it is possible to merge the states
Initialized and Accepted. Since the funds distribution in case of
a possible dispute is still identical after merging (no exchange,
since neither the buyer can decrypt the file nor the seller gets
access to the payment), we retain a fair exchange.

b) Construction of a Perun State Channel App: Based on
the fund distribution changing transitions, the states Accepted,
Key Revealed, and Successful Complaint are required for our
app smart contract. Further, since a Perun state channel can
run indefinitely, if all participants mutually agree on and sign
app state updates, an unlimited number of exchanges can be
conducted by allowing a transition from Key Revealed back to
Accepted. As soon as there is a disagreement, the state channel
will go to the Finalize phase and the app smart contract will be
executed on-chain implementing the same logic as shown in
Lst. 1. Bringing together the Perun state channel phases with
app states, this results in the complete state chart in Fig. 3.

| Transact

Finalize

A

\ (Successful .
9) Q(ey Revealecﬂ—)[ccmmaim O

Fig. 3. Full state chart of FairSCE with app states in context of Perun phases.

IV. PROTOCOL SECURITY
A. FairSCE Protocol Security

Considering FairSwap as a baseline, there is one central
security guarantee that fair exchange protocols must fulfill:
An honest party will not experience any disadvantages in case

of interacting with a cheating party. For exchanges using the
plain FairSwap protocol, Dziembowski et al. have shown that
fairness is guaranteed when at least one party follows the
protocol [6]. We must consider two differences between the
original FairSwap protocol and FairSCE. First, we must show
that changing the execution context from direct interaction
with a blockchain to a state channel has no negative security
impact, and second, our adaptions for executing FairSwap in
a state channel do not threaten the protocol security.

1) Smart Contract Execution Context: We extended the
smart contract execution context from a purely on-chain to an
off-chain execution in a state channel. Since Perun provides
the same security guarantees for apps [13] as a blockchain
provides for on-chain smart contracts [17], [18], extending the
execution context does not impact the security consideration.

2) App States: FairSwap and FairSCE differ in their states
and transitions. Following the security discussion of FairSwap,
we must show equivalence for three security criteria: Termi-
nation, Sender Fairness, and Receiver Fairness [6].

a) Termination: FairSwap is guaranteed to terminate due
to its limited set of states without loops and allowing to
switch to a subsequent state at the latest after a timeout. Also,
FairSCE allows to switch to a subsequent state at the latest
after a timeout has elapsed. While FairSCE contains one loop
in the Transact phase between Accepted and Key Revealed, any
party can leave the loop at any time by registering a dispute,
which will progress the state machine to the Finalize phase.
In the Finalize phase, the FairSCE app has the same states
and transitions as in FairSwap except for the Initialization and
no loops exist. Equally to FairSwap, as soon as being in the
Finalize phase, all state transitions are executed on-chain.

b) Sender Fairness: In FairSwap, sender fairness means
that the receiver cannot decrypt the exchanged file unless the
honest sender is guaranteed to be paid. The decryption key is
only exchanged after the payment has been locked by sending
it to the Perun smart contract. Like FairSwap, the seller can
claim the funds when two conditions are met: First, the key
must be available to the buyer in a publicly verifiably manner,
which is done when the Key Revealed state of the Finalize
phase is reached. Second, a timeout must be passed in which
the buyer did not send a complaint, which he can only do
successfully if the key or the transferred data is incorrect.

¢) Receiver Fairness: As in FairSwap, buyers must lock
funds for payment before receiving the file and verifying its
correctness. A mechanism is required to withdraw the funds in
case of a failed file transfer (no file, wrong file, or wrong key),
which FairSwap realizes by proof of misconduct [6]. Since we
adopted this mechanism without modification (as part of the
on-chain Finalize phase), the same guarantees apply.

In summary, neither the changed execution context nor our
adaptation of FairSwap for efficient execution in a state chan-
nel has a negative impact on the security of FairSCE. Attacks
such as majority attacks [23] or collusion attacks [24] are ei-
ther general attacks on blockchains or are handled by the lever-
aged state channel [13], [14]. In the end, blockchain-based pro-
tocols have to assume the underlying blockchain to be secure

and resilient against general blockchain attacks. Therefore,
FairSCE provides the same security guarantees as FairSwap.

B. Grieving Attack Prevention

When using the Extra Deposit smart contract, the following
cases may occur, all of which exclude a grieving attack against
both the seller and the buyer. For all cases listed below, we
assume the seller already deployed the Extra Deposit smart
contract, waiting for a buyer to request a fair exchange.

No buyer. When a seller sets up the Extra Deposit smart
contract, including a first security deposit but no buyer uses
it, the seller can withdraw the funds deposited at any time,
but initialization, deposit, and withdrawal are charged. Despite
there are no compensating revenues, e.g., successful fair
exchanges, the decision to set up and deposit funds is alone
in preparation for possible future transactions, not necessarily
at the request of an individual buyer. Therefore, this is not a
grieving attack but a general investment (comparable to the
deployment cost of a web shop). Even if the Extra Deposit
setup is conducted as a reply to a request of a single grieving
buyer, the Extra Deposit can still be used for further buyers
later in time. Even if buyers repeatedly request a fair exchange
without participating, the seller has no additional cost for
subsequent requests, as the Extra Deposit smart contract is
already deployed and provided with a deposit.

Buyer initializes a fair exchange, then behaves unfaithfully.
After a seller prepares the Extra Deposit smart contract and a
buyer initializes a fair exchange, the Extra Deposit contract
forces the buyer to pay a predefined deposit during the
initialization. If the buyer unfaithfully leaves the fair exchange
protocol, its deposit can be used to compensate the seller.
Therefore, the buyer cannot conduct a grieving attack if the
seller follows the wrapped smart contract, e.g., FairSCE.

Buyer initializes a fair exchange, then the seller behaves
unfaithfully. Since the Extra Deposit smart contract provides a
pre-defined amount of funds from the deposit of the seller to
the wrapped smart contract, e.g., for the deposit of FairSCE,
together with the deposit of the buyer, the buyer can be com-
pensated if the seller starts to behave unfaithfully, e.g., leaving
the protocol unfaithfully or not providing the file expected by
the buyer. Since the buyer can investigate the Extra Deposit
upfront, the seller is not able to conduct a grieving attack.

V. EVALUATION

In our evaluation, we investigate the cost incurred due to the
Extra Deposit and its practical feasibility (RQ;) and examine
the difference between FairSwap and FairSCE in terms of cost,
as asked for in RQ,, and performance, as asked for in RQj3.

A. Evaluation Setup

1) Cost Evaluation (RQ; & RQ>): Each interaction with the
smart contract of the FairSwap or FairSCE fair exchange pro-
tocol incurs transaction costs when executed on the underlying
blockchain. To show the practical feasibility of Extra Deposit,
we must compare its additional cost with the cost arising due
to grieving attacks. To investigate the cost incurred by the two

fair exchange protocols and of Extra Deposit, we invoke their
smart contract methods (for FairSCE including Extra Deposit)
in sequences reflecting seller and buyer behaviors, while
measuring the cost of each interaction with the smart contract.

The behavior of the parties in a fair exchange can be dis-
tinguished into those parties that follow the protocol (referred
to as faithful behavior) and those that deviate from the actions
specified by the fair exchange protocol (referred to as unfaith-
ful behavior). Since faithful behavior is assumed to be the most
common case, the cost of joint faithful execution is important
to know for repeated use in a production environment.

Whenever the protocol requires an action from a party, it
may unfaithfully perform an action different from the expected
one or do nothing, the latter being considered unfaithfully
leaving. However, due to validations performed by the smart
contract, an unfaithful party cannot perform arbitrary actions.
For example, in FairSwap, being in the Accepted state, the only
possible action for the seller to perform is to reveal the key he
committed to by adding the cryptographic hash value of the
key. Any other action will be rejected by the smart contract.

We assume both seller and buyer to act rationally, and
therefore, apart from possibly trying to cheat the other party
(which could raise their benefit in case the other party does not
act rationally), they never behave in a way that is inevitably
to their disadvantage. Also, we do not consider cases in
which both parties simultaneously do not follow the protocol
since this cannot be considered protocol execution. For this
reason, there is only a limited number of unfaithful behaviors
to consider besides unfaithful leaving, namely those that the
smart contract cannot directly validate and reject:

Buyer leaves unfaithfully. After the exchange has been
initialized (FairSwap smart contract deployment or Perun state
channel opening), the buyer leaves without further action. If
the initialization is charged with non-negligible cost (such
as the smart contract deployment done by the seller), this
represents a grieving attack.

Seller leaves unfaithfully. The seller leaves at an arbitrary
point in time after he has confirmed to provide the data
requested by the buyer and the buyer provided the payment (to
the FairSwap smart contract or as state channel transaction).
Even if the seller must bear costs, this can be considered ratio-
nal behavior if the disadvantages caused to the buyer are higher
than the cost for the seller. For example, in FairSwap, the seller
can cause the buyer to temporarily block funds that the buyer
cannot use for another exchange at the same time. Since, when
using the Extra Deposit smart, each party must provide funds
to be locked in order to lock funds of the other party contract,
the cost to one party is as high as the damage caused to the
other party, thus removing the argument for rational behavior.

Seller provides wrong/modified file. The seller encrypts a file
different from the file requested by the buyer and subsequently
sends it to the buyer. After the seller reveals the key, the
buyer can decrypt and discover the mismatch and conduct a
complaint (which is wrapped in a dispute when a Perun state
channel is used). After the buyer has submitted a valid proof of
misbehavior of the buyer to the fair exchange smart contract,

he can request a refund of the payment.

As already mentioned in the FairSwap [6] paper, the cost
of conducting a complaint depends on the size of the input to
the complaint method invoked to submit the complaint to the
smart contract. Therefore, we executed all simulations with
different file sizes in powers of two, starting with 1 KiB.

2) Performance Evaluation (RQ3): To answer RQ3, we aim
to determine the performance in terms of protocol executions
per time unit of FairSwap and FairSCE. As outlined by our
industry partners, the performance of successful and recurring
exchanges is most critical for practical application. Therefore,
we assume for the performance evaluation that no party will
behave in such a way that the other party is compelled to
start a dispute. Accordingly, we measured the performance of
FairSwap and FairSCE always conducting successful recurring
file exchanges. For each file exchange, we measure the time
used for initialization, encryption of the file to be exchanged,
file transfer, decryption by the buyer, and validation if the de-
crypted file equals the expected file. In practice, an unfaithful
party can slow down protocol execution in manifold ways, e.g.,
by idling for some time before reacting to transactions of the
other party or just stopping its participation in the protocol, but
not by more than the sum of all the timeouts set for its actions.

After the key has been revealed, in FairSwap, the buyer
can optionally confirm the correctness of the key to the
smart contract, which then releases the payment to the seller.
However, for this confirmation, the sender has to create an
additional transaction, which raises cost in FairSwap but is free
in FairSCE as this is done within the state channel. Usually, a
rational buyer would not send the confirmation to save trans-
action fees, since the seller can always claim the funds after a
timeout passes. As we do not consider cost for the performance
evaluation, and we want to compare FairSCE against the best-
case performance of FairSwap, we let the buyer send the con-
firmation to prevent the sender from waiting for the timeout.

For FairSCE, we assume both parties to be interested in suc-
cessful recurring file exchanges using the same state channel.
To this end, we include a single initial contract deployment
on the blockchain in our evaluation. At the end of each fair
exchange, we assume the seller to settle the state channel to be
able to claim the funds since he has the highest incentive to do
so (since the buyer already got the files). However, which party
conducts the settlement does not influence the performance.

B. Implementation

For the evaluation, we used the existing prototypical FairSwap
implementation and implemented FairSCE with Extra Deposit.
Both are implemented using Solidity [25]. FairSwap offers
the buyer three types of complaints (root, node, and leaf)
that slightly differ implementation-wise in their cryptographic
proof, therefore being subject to different cost and perfor-
mance. We refer to Dziembowski et al. [6] for technical details.
As our implementation of FairSCE is based on FairSwap, these
aspects equally apply.

To simulate seller and buyer behaviors and to monitor their
interactions with the blockchain, we implemented BFEBench

[16], a fair exchange benchmark tool. BFEBench allows to
define behaviors for seller and buyer to be spawned as indi-
vidual processes, which can directly communicate with each
other and access a shared blockchain instance.

For the blockchain instance, we used Ganache [26], an
Ethereum-compatible blockchain simulation software, that
uses the same internal pricing model as Ethereum. To shorten
the runtime of the cost evaluation, we configured the Ganache
blockchain to create a new block every second, which does not
influence the cost compared to a real-world protocol execution.
For the performance evaluation, we configured the Ganache
blockchain to create a block every 15 seconds, corresponding
to the usual interval between two blocks of the Ethereum
blockchain. Thus, the rate of blockchain smart contract interac-
tions of our evaluation (one interaction per block) corresponds
to the best-case rate on the Ethereum blockchain.

For each experiment, two single-threaded processes repre-
senting seller and buyer were spawned, both connecting to the
same Ganache instance that was not used by other processes
in parallel. Consequently, our results need to be interpreted as
best-case and might be worse when using the protocols with
a shared blockchain. The experiments were run on a server
with two Intel(R) Xeon(R) E5-2690 CPUs (8 cores/16 threads
each) with 2.90 GHz and 128 GB of RAM.

C. Evaluation Results

In this section, we discuss the results of our experiments. Our
replication package [22] provides all experiment data.

1) Cost Evaluation: We simulated different seller and buyer
behaviors for FairSwap and FairSCE with Extra Deposit to
determine the cost of each interaction with the underlying
blockchain. Thereby, we identified the four categories of cost
in relation to the executed fair exchanges discussed below.

a) Cost for Initializing a Fair Exchange: The static
overhead for deploying FairSwap or FairSCE has a significant
impact on the cost for exchanges. To be able to offer a fair ex-
change using FairSCE, Perun (5,844,671 Gas) and the FairSCE
app smart contract (3,147,654 Gas) need to be deployed once.
Thereafter, these contracts can be reused by any buyer to
initialize an arbitrary number of FairSCE state channels at
the cost of 46,308 Gas per initialization. Each state channel
can then be reused for an arbitrary number of fair exchanges.

In FairSwap, initialization cost (1,495,092 Gas) has to be
paid per exchange by the seller. Therefore, even if the seller
has to deploy Perun and FairSCE smart contracts, initialization
of FairSCE would be cheaper for the seller starting from the 7%
exchange with a single buyer when using the same state chan-
nel for all exchanges or from the 11" exchange when using a
new state channel for each exchange. Since the seller typically
passes on his costs to the buyer anyway, using FairSCE is
beneficial for the buyer as well due to lower total cost.

b) Cost for Faithful Fair Exchanges: In addition to the
initialization cost, both protocols incur costs for successfully
completing fair exchanges. In FairSwap, these costs are 88,356
Gas for the seller and 36,080 Gas for the buyer per fair ex-
change. In FairSCE, these costs arises per state channel, which

50

— FairSwap
—— FairSCE (one exchange per state channel)
FairSCE (one state channel for multiple exchanges)

N
o

BN W
o O o

Total costin 10° Gas

1 3 5 7 9 1

13 15 17
Number of Fair Exchanges

19 21 23 25 27 29

Fig. 4. Total cost for FairSwap and FairSCE including contract deployment
and exchange initialization in relation to the number of conducted exchanges.

can be used for any number of fair exchanges, and are 208,363
Gas for the seller and 46,308 Gas for the buyer. Therefore, as
shown in Fig. 4, even if only one fair exchange is carried out
per state channel, the total cost for the seller using FairSCE
(including smart contract deployment) is cheaper compared to
FairSwap from the eleventh faithful exchange onwards.

c) Cost for Conducting a Complaint: If a seller behaves
unfaithfully by providing the buyer with the wrong file or
key, costs arise for conducting a complaint. Table I shows
the cost for the buyer to conduct a complaint in case of a
cheating seller. The cost of a complaint depends on its type,
for technical details we refer to Dziembowski et al. [6], and
the size of the file received. Fig. 5 visualizes these costs. It
can be seen that the cost depends logarithmically on the size
of the file received from the seller.

d) Cost for Grieving Attack Prevention: Finally, we
discuss the cost for using the grieving attack prevention and
how easily an attacker could cause higher cost if it is not used.
The costs for grieving attack prevention consist of setting up
the Extra Deposit smart contract (493,342 Gas) and conducting
an initial deposit (21,055 Gas). The cost for initializing a state
channel for FairSCE increases by 47,845 Gas. Ongoing cost
per exchange can arise for depositing additional funds in the
Extra Deposit (21,055 Gas) or withdrawing deposited funds
(30,844 Gas). The costs for the actual exchange do not change.
Assuming the worst case of only one customer, grieving attack
prevention creates additional cost of 562,242 Gas a single time.
For the grieving attack prevention to be useful in practice, an
attacker must be able infer higher cost. Without Extra Deposit,
the FairSCE initialization could be done by any party (46,308
Gas) which are the cost at stake per exchange in case of
grieving. Summarized, if an adversarial, e.g., buyer can spawn
identities at negligible cost, as it is, e.g., with the Ethereum
blockchain, the financial damage to the seller exceeds the Extra
Deposit cost already after the 12" successful attack.

To summarize the cost evaluation, Table II aggregates the
costs into a comparative overview of FairSwap and FairSCE
for a file size of 1 MiB. In the faithful case, the costs are more
balanced between seller and buyer in FairSCE compared to
FairSwap. To answer RQ,, especially for faithful exchanges,
our evaluation shows a reduction of total cost as well as
individual cost for the seller because FairSCE has reusable
smart contracts and does not incur costs for each exchange.

In case of a complaint, the buyer has higher cost in FairSCE,
which could be seen as a significant disadvantage at first sight.

TABLE I
FILE-SIZE-DEPENDENT COST OF COMPLAINTS MEASURED IN Gas.

root node leaf
Cost o Cost o Cost o
1KiB 45,424 10 51,058 22 52,752 17
2KiB 46,301 10 52,684 21 54,373 20
4KiB 47,153 13 54,432 20 56,080 18
a 8KiB 47,985 12 56,108 24 57,753 19
g 16KiB 48,860 12 57,789 21 59,481 21
2} 32KiB 49,778 13 59,431 22 61,127 21
E 64KiB 50,586 16 61,191 20 62,835 21
128KiB 51,438 16 62,878 24 64,508 21
256KiB 52,253 14 64,521 25 66,255 23
512KiB 53,169 18 66,230 27 67,945 26
IMiB 54,044 18 67,889 25 69,642 22
1 KiB 82,245 17 94,822 22 99,234 24
2 KiB 83,662 18 97,625 24 102,027 21
4 KiB 85,070 17 100,404 23 104,832 22
o 8 KiB 86,486 17 103,220 23 107,624 24
@) 16 KiB 87,867 20 105,984 26 110,391 25
e 32 KiB 89,298 22 108,776 32 113,211 28
s 64 KiB 90,681 20 111,579 25 115978 25
128 KiB 92,098 19 114,387 29 118,799 29
256 KiB 93,515 20 117,181 33 121,589 29
512 KiB 94917 23 119,970 28 124,374 29
1 MiB 96,304 20 122,768 25 127,195 30
c lain about: —-root —&—leaf node (FairSwap)
1300mp ainaoout: oot —»—leaf —< node (FairSCE)
115
@
g 100
S 85
£
@ 70
o
O

55

40

1 2 4 8 16 32 64
File Size in KiB

128 256 512 1024

Fig. 5. Logarithmic growth of the cost a buyer must pay for conducting a
complaint in FairSwap and FairSCE depending on the size of the file received.

However, when Extra Deposit is used, the cost information
collected allows us to calculate the minimum deposits of each
party needed to be able to compensate the faithful party if the
other one behaves unfaithfully. For initializing FairSCE with
Extra Deposit, the initial deposit should be as high as the fees
at stake for a buyer when initializing a fair exchange in case
the seller leaves unfaithfully, resulting in a total of 376,017
Gas including the dispute. For complaints, since the file size
is the only non-static factor influencing cost, in particular
the insight that the cost for a complaint grow logarithmically
with the file size, allows for reasonable estimations that are
sufficient even for unexpectedly large files. For example, we
estimate the cost for a leaf complaint for a file of 1 TiB to
cost approx. 181,000 Gas, this results in a total of 557,017
Gas needed for compensation. Since only one of the two cases
can occur, the seller must provide the Extra Deposit smart
contract with sufficient funds to compensate for 557,017 Gas.
2) Performance Evaluation: For the performance evalua-
tion, we measured the time needed for multiple recurring file
exchanges using FairSwap and FairSCE. Table III shows the
average time consumed per exchange out of 100 consecutive
fair exchanges for both protocols, using different file sizes.
The execution time of FairSwap is independent of the

TABLE II
WORST-CASE COSTS FOR A SINGLE FAIR EXCHANGE INCLUDING
DEPLOYMENT AND INITIALIZATION OVERHEAD.

File Size FairSwap cost | FairSCE cost
Seller Buyer Seller Buyer
faithful exchange all 1,583,448 36,080 | 722,760 94,153
unfaithful seller 1 MiB - 105,722 503,212
unfaithful buyer 1 MiB 1,495,092 807,841
TABLE III

NUMBER OF EXCHANGES PER MINUTE FOR FAIRSWAP AND FAIRSCE.

FairSwap FairSCE
Avg. Time Perf. Avg. Time Perf. Speedup
1 KiB Im Os 1.0/min Is 50.2/min 50.2
2 KiB Im 0s 1.0/min Is 49.9/min 50.0
4 KiB Im 0s 1.0/min Is 50.3/min 50.3
8 KiB Im 0s 1.0/min Is 50.2/min 50.2
16 KiB Im Os 1.0/min Is 50.1/min 50.2
32 KiB 1m Os 1.0/min Is 44.7/min 44.7
64 KiB 1m Os 1.0/min 2s 36.5/min 36.5
128 KiB Im Os 1.0/min 2s 26.7/min 26.7
256 KiB Im Os 1.0/min 4s 16.7/min 16.7
512 KiB Im Os 1.0/min 6s 9.8/min 9.8
1 MiB Im 0s 1.0/min 12s 5.1/min 5.1
2 MiB Im 15s 0.8/min 24s 2.5/min 3.1
4 MiB Im 33s 0.6/min 55s 1.1/min 1.7
8 MiB 2m 49s 0.4/min 2m 18s 0.4/min 1.2
16 MiB 9m 44s 0.1/min 9m 04s 0.1/min 1.1

file size for files between 1KiB and 1 MiB and always one
minute for each exchange. The reason for this is that the
computational work of FairSwap (computing and validating
cryptographic hash values, encrypting and decrypting the
exchanged file) is completed before Ethereum creates a new
block and the party must wait for the next block, which takes
up to 15 seconds. Since FairSwap requires four interactions,
each exchange takes at least one minute. Starting from 2
MiB, the computational work exceeds the block creation time
of 15 seconds and, therefore, results in increased durations.

For FairSCE, the block creation time is not a limiting factor,
as exchanges are conducted using the state channel. Once the
state channel is created, only available resources (e.g., CPU
power or Internet connection) limit the performance.

To answer RQj, concerning the extent to which we can
reduce the time required for a fair exchange, this extent
depends on the size of the files to be exchanged. For small
files with a size below 32 KiB, we can reduce the required
time by around 98% by avoiding waiting for block creations.

3) Threats to Validity: In general, the experiment is repro-
ducible except for a slight variation in cost due to technical
reasons that can be neglected. This slight variation is caused by
a different price charged by the Ethereum blockchain for bytes
equaling zero compared to bytes not equaling zero. The cost
calculations of Ganache could differ from those of Ethereum.
Since Ganache is widely used in the blockchain community
to develop, test, and debug Ethereum smart contracts, realistic
results can be assumed. Running all three processes (seller,
buyer, and Ganache) on the same host machine neglects the
influence of a remote connection. Since Internet connections
usually have low latencies compared to latencies due to
waiting for blocks, this can be neglected. The assumption that

transactions sent to the blockchain will always be accepted
in the next created block might not hold. On the Ethereum
blockchain, a transaction can have to wait several blocks to be
included. This can result in poorer performance or in higher
costs for FairSwap but does not affect faithful exchanges using
FairSCE. Finally, due to the choice of FairSwap and Perun as a
reference, the observed outcomes might not apply to other state
channels or fair exchange protocols, or other blockchains.

VI. RELATED WORK

Beside our work, multiple other approaches base on or aim
at improving FairSwap [6]. E.g., FastSwap [9] and OptiSwap
[7] introduce interactive challenge-response procedures for
disputes to reduce overhead for honest parties in the optimistic
case. SmartJudge [8] reduces blockchain transaction fees per
protocol execution by adding a less costly mediator contract
to an existing verifier contract (e.g., FairSwap). The verifier
contract is assumed to be more expensive to use as the
mediator contract and will only be involved in case of a
dispute. Each of these examples requires repeated on-chain
interaction per protocol iteration. Therefore, performance and
cost depend on the underlying layer-one blockchain.

Besides Layer-Two approaches [12] such as Perun [14],
so-called commit chains can be used [12], [27], [28], which
is a small and low-cost blockchain that used an established
blockchain as trust anchor and can be used to reduce the
number of interactions with the established blockchain.

Instead of blockchains with non-negligible fees, other ledger
concepts can be used. E.g., the EOSIO blockchain [29] elimi-
nates transaction fees, instead, smart contract developers must
buy capacity (called RAM) for their smart contracts to be
executed. Alternatively, in /OTA [30], instead of paying trans-
action fees, each party intending to send a transaction to the
IOTA network must do a small Proof-of-Work computation.
Similar to the funds needed to pay for blockchain transaction
fees, CPU time is also a limited resource and cannot be scaled
up without a significant investment.

VII. CONCLUSION AND OUTLOOK

In this work, we have presented FairSCE, a blockchain-
based two-party fair exchange protocol using state channels
for lowering the transaction cost on blockchains and increas-
ing performance. Furthermore, we introduced Extra Deposit
as a mechanism for grieving attack prevention (RQ;). We
demonstrated the feasibility of FairSCE in our evaluation
concerning the cost and performance inferred by executing
FairSwap and FairSCE (RQ, and RQ3). We show significantly
lower transaction costs for the faithful case considering data of
different sizes and an increase in performance, especially for
repeated exchanges small files. In unfaithful cases, FairSCE
allows to refund the cheated party.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Research and Education (AI-NET-PROTECT, No. C2019/3-4)
and the European Commission as part of the Horizon 2020
programme (TRUSTyFOOD, No. 101060534).

[1]
[2]
[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

N. Asokan, “Fairness in electronic commerce,” Ph.D. dissertation, Uni-
versity of Waterloo, 1998.

H. Pagnia, H. Vogt, and F. C. Girtner, “Fair Exchange,” The Computer
Journal, vol. 46, no. 1, pp. 55-75, Jan. 2003.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374-382, Apr. 1985.

H. Pagnia, “On the Impossibility of Fair Exchange without a Trusted
Third Party,” Darmstadt University of Technology, Department of Com-
puter Science, Tech. Rep. TUD-BS-1999-02, 1999.

S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-
Joancomarti, “A fair protocol for data trading based on Bitcoin trans-
actions,” Future Generation Computer Systems, vol. 107, pp. 832-840,
Jun. 2020.

S. Dziembowski, L. Eckey, and S. Faust, “FairSwap: How To Fairly
Exchange Digital Goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. Toronto
Canada: ACM, Oct. 2018, pp. 967-984.

L. Eckey, S. Faust, and B. Schlosser, “OptiSwap: Fast Optimistic
Fair Exchange,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security. Taipei Taiwan: ACM, Oct.
2020, pp. 543-557.

E. Wagner, A. Volker, F. Fuhrmann, R. Matzutt, and K. Wehrle,
“Dispute Resolution for Smart Contract-based Two-Party Protocols,” in
2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), May 2019, pp. 422-430.

M. Hall-Andersen, “FastSwap: Concretely Efficient Contingent Pay-
ments for Complex Predicates,” https://eprint.iacr.org/2019/1296, 2019.
M. Lohr, K. Skiba, M. Konersmann, J. Jiirjens, and S. Staab, “For-
malizing Cost Fairness for Two-Party Exchange Protocols using Game
Theory and Applications to Blockchain,” in 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2022.

S. Eskandari, S. Moosavi, and J. Clark, “SoK: Transparent Dishonesty:
Front-Running Attacks on Blockchain,” in Financial Cryptography and
Data Security, ser. Lecture Notes in Computer Science, A. Bracciali,
J. Clark, F. Pintore, P. B. Rgnne, and M. Sala, Eds. Cham: Springer
International Publishing, 2020, pp. 170-189.

L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Layer-Two Blockchain Protocols,” in Financial Cryptography and
Data Security, J. Bonneau and N. Heninger, Eds. =~ Cham: Springer
International Publishing, 2020, vol. 12059, pp. 201-226.

S. Dziembowski, S. Faust, and K. Hostdkova, “General State Channel
Networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. Toronto Canada: ACM, Oct.
2018, pp. 949-966.

S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
Payment Hubs over Cryptocurrencies,” in 2019 IEEE Symposium on

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]
(30]

Security and Privacy (SP). San Francisco, CA, USA: IEEE, May 2019,
pp- 106-123.

P. McCorry, C. Buckland, S. Bakshi, K. Wiist, and A. Miller, “You
Sank My Battleship! A Case Study to Evaluate State Channels as a
Scaling Solution for Cryptocurrencies,” in Financial Cryptography and
Data Security, ser. Lecture Notes in Computer Science, A. Bracciali,
J. Clark, F. Pintore, P. B. Rgnne, and M. Sala, Eds. Cham: Springer
International Publishing, 2020, pp. 35-49.

M. Lohr, “Blockchain-based Fair Exchange Bench-
mark Tool (BFEBench) for FairSwap and FairSCE,”
https://gitlab.com/MatthiasLohr/bfebench, accessed on 2023-02-07.

G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” https://ethereum.github.io/yellowpaper/paper.pdf, Jun. 2022,
accessed on 2023-02-06.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech.
Rep., 2008.

C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Stabilization, Safety,
and Security of Distributed Systems: 17th International Symposium, SSS
2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings 17.
Springer, 2015, pp. 3-18.

“Connext Network,” https://connext.network, accessed on 2023-11-27.

“Nitro State Channels Network,” https://statechannels.org/, accessed on
2023-11-27.

M. Lohr, S. Peldszus, J. Jiirjens, and S. Staab, “Fast, Favorable, and
Fair Blockchain-based Exchange of Digital Goods using State Channels
- Replication Package,” https://zenodo.org/records/10793692, 2024.

S. Dey, “Securing Majority-Attack in Blockchain Using Machine Learn-
ing and Algorithmic Game Theory: A Proof of Work,” in 2018 10th
Computer Science and Electronic Engineering (CEEC), Sep. 2018, pp.
7-10.

S. Thakur and J. G. Breslin, “Collusion Attack from Hubs in The
Blockchain Offline Channel Network,” in Mathematical Research for
Blockchain Economy, P. Pardalos, 1. Kotsireas, Y. Guo, and W. Knotten-
belt, Eds. Cham: Springer International Publishing, 2020, pp. 31-44.

“Solidity Programming Language,” https://soliditylang.org/, accessed on
2023-11-27.

“Truffle Suite One Click Blockchain,” https://trufflesuite.com/ganache/,
accessed on 2023-11-27.

R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain Pay-
ment Networks,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. Dallas Texas USA: ACM,
Oct. 2017, pp. 439-453.

R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, and
A. Gervais, “Commit-Chains: Secure, Scalable Off-Chain Payments,”
https://eprint.iacr.org/2018/642, 2018.

“EOSIO Blockchain,” https://eos.io/, accessed on 2023-11-27.

S. Popov, “The Tangle,” https://bit.ly/420s8QA, Oct. 2017, accessed on
2023-06-08.

